Christopher R. J. Fennell, Alexis R. Mauger, James G. Hopker
{"title":"Alpha band oscillations in common synaptic input are explanatory of the complexity of isometric knee extensor muscle torque signals","authors":"Christopher R. J. Fennell, Alexis R. Mauger, James G. Hopker","doi":"10.1113/EP092031","DOIUrl":null,"url":null,"abstract":"<p>We investigated whether the strength of oscillations in common synaptic input was explanatory of knee extensor (KE) torque signal complexity during fresh and fatigued submaximal isometric contractions, in adults aged from 18 to 90 years. The discharge times of motor units were derived from the vastus lateralis muscle of 60 participants using high-density surface EMG, during 20 s isometric KE contractions at 20% of maximal voluntary contraction, performed before and after a fatiguing repeated isometric KE contraction protocol at 60% of maximal voluntary contraction. Within-muscle coherence Z-scores were estimated using frequency-domain coherence analysis, and muscle torque complexity was assessed using multiscale entropy analysis and detrended fluctuation analysis. Alpha band (5–15 Hz) coherence was found to predict 23.1% and 31.4% of the variance in the complexity index under 28-scales (CI-28) and detrended fluctuation analysis α complexity metrics, respectively, during the fresh contractions. Delta, alpha and low beta band coherence were significantly increased due to fatigue. Fatigue-related changes in alpha coherence were significantly predictive of the fatigue-related changes in CI-28 and detrended fluctuation analysis α. The fatigue-related increase in sample entropy from scales 11 to 28 of the multiscale entropy analysis curves was significantly predicted by the increase in the alpha band coherence. Age was not a contributory factor to the fatigue-related changes in within-muscle coherence and torque signal complexity. These findings indicate that the strength of alpha band oscillations in common synaptic input can explain, in part, isometric KE torque signal complexity and the fatigue-related changes in torque signal complexity.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":"109 11","pages":"1938-1954"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1113/EP092031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1113/EP092031","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated whether the strength of oscillations in common synaptic input was explanatory of knee extensor (KE) torque signal complexity during fresh and fatigued submaximal isometric contractions, in adults aged from 18 to 90 years. The discharge times of motor units were derived from the vastus lateralis muscle of 60 participants using high-density surface EMG, during 20 s isometric KE contractions at 20% of maximal voluntary contraction, performed before and after a fatiguing repeated isometric KE contraction protocol at 60% of maximal voluntary contraction. Within-muscle coherence Z-scores were estimated using frequency-domain coherence analysis, and muscle torque complexity was assessed using multiscale entropy analysis and detrended fluctuation analysis. Alpha band (5–15 Hz) coherence was found to predict 23.1% and 31.4% of the variance in the complexity index under 28-scales (CI-28) and detrended fluctuation analysis α complexity metrics, respectively, during the fresh contractions. Delta, alpha and low beta band coherence were significantly increased due to fatigue. Fatigue-related changes in alpha coherence were significantly predictive of the fatigue-related changes in CI-28 and detrended fluctuation analysis α. The fatigue-related increase in sample entropy from scales 11 to 28 of the multiscale entropy analysis curves was significantly predicted by the increase in the alpha band coherence. Age was not a contributory factor to the fatigue-related changes in within-muscle coherence and torque signal complexity. These findings indicate that the strength of alpha band oscillations in common synaptic input can explain, in part, isometric KE torque signal complexity and the fatigue-related changes in torque signal complexity.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.