Stanislas Abrard, Thomas Coquet, Jérémie Riou, Emmanuel Rineau, Jeanne Hersant, Antoine Vincent, Julien Cordoval, Matthias Jacquet-Lagrèze, Bernard Allaouchiche, Anne-Claire Lukaszewicz, Samir Henni
{"title":"DETECTION AND QUANTIFICATION OF MICROCIRCULATORY DYSFUNCTION IN SEVERE COVID-19 NOT REQUIRING MECHANICAL VENTILATION: A THREE-ARM COHORT STUDY.","authors":"Stanislas Abrard, Thomas Coquet, Jérémie Riou, Emmanuel Rineau, Jeanne Hersant, Antoine Vincent, Julien Cordoval, Matthias Jacquet-Lagrèze, Bernard Allaouchiche, Anne-Claire Lukaszewicz, Samir Henni","doi":"10.1097/SHK.0000000000002451","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Aim: To identify and describe microcirculatory dysfunction (MD) in severe COVID-19 cases. Methods: This prospective, cohort study evaluated microvascular function in COVID-19 patients with acute respiratory failure not requiring mechanical ventilation and compared it with that of non-COVID-19 intensive care unit (ICU)-matched controls. A validation cohort included healthy, comorbidity-free patients. The primary outcome compared tissue oxygen resaturation slope (rStO 2 ) in COVID-19 patients and non-COVID ICU controls. rStO 2 was measured post a 3-min vaso-occlusive test during post-occlusive reactive hyperemia (PORH). Additionally, microvascular reactivity was assessed using perfusion index (PI) during PORH and laser speckle contrast imaging post iontophoresis with acetylcholine (ACH), sodium nitroprusside (SNP), and sublingual microcirculation. Results: Overall, 75 patients (25 per cohort) were included. COVID-19 patients exhibited greater severity than ICU controls, as indicated by their SOFA scores (4.0 [3.0; 4.0] vs. 1.0 [0; 1.0], P < 0.001) and PaO 2 /FiO 2 ratios (113 [82; 150] vs. 443 [348; 533], P < 0.001). No significant difference was observed in rStO 2 between the groups. COVID-19 patients showed longer time in reaching peak PI ( P = 0.025), reduced vasodilation with ACH and SNP ( P = 0.010 and P = 0.018, respectively), and increased microvascular density ( P = 0.019) compared to non-COVID-19 ICU controls. Conclusion: We observed evidence of MD in COVID-19 patients through various microcirculatory parameters. This study's reproducible multimodal approach facilitates acute MD detection across multiple clinical applications. Limitations included the observational design, limited statistical power, single-time microvascular measurements, varying illness severity among groups, and possible influences of treatments and vaccinations on MD. Trial registration : Clinical-Trials.gov (NCT04773899).</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":"673-681"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002451","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Aim: To identify and describe microcirculatory dysfunction (MD) in severe COVID-19 cases. Methods: This prospective, cohort study evaluated microvascular function in COVID-19 patients with acute respiratory failure not requiring mechanical ventilation and compared it with that of non-COVID-19 intensive care unit (ICU)-matched controls. A validation cohort included healthy, comorbidity-free patients. The primary outcome compared tissue oxygen resaturation slope (rStO 2 ) in COVID-19 patients and non-COVID ICU controls. rStO 2 was measured post a 3-min vaso-occlusive test during post-occlusive reactive hyperemia (PORH). Additionally, microvascular reactivity was assessed using perfusion index (PI) during PORH and laser speckle contrast imaging post iontophoresis with acetylcholine (ACH), sodium nitroprusside (SNP), and sublingual microcirculation. Results: Overall, 75 patients (25 per cohort) were included. COVID-19 patients exhibited greater severity than ICU controls, as indicated by their SOFA scores (4.0 [3.0; 4.0] vs. 1.0 [0; 1.0], P < 0.001) and PaO 2 /FiO 2 ratios (113 [82; 150] vs. 443 [348; 533], P < 0.001). No significant difference was observed in rStO 2 between the groups. COVID-19 patients showed longer time in reaching peak PI ( P = 0.025), reduced vasodilation with ACH and SNP ( P = 0.010 and P = 0.018, respectively), and increased microvascular density ( P = 0.019) compared to non-COVID-19 ICU controls. Conclusion: We observed evidence of MD in COVID-19 patients through various microcirculatory parameters. This study's reproducible multimodal approach facilitates acute MD detection across multiple clinical applications. Limitations included the observational design, limited statistical power, single-time microvascular measurements, varying illness severity among groups, and possible influences of treatments and vaccinations on MD. Trial registration : Clinical-Trials.gov (NCT04773899).
期刊介绍:
SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.