Recent progress in modeling and treating diabetes using stem cell-derived islets.

IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cells Translational Medicine Pub Date : 2024-10-10 DOI:10.1093/stcltm/szae059
Marlie M Maestas, Maggie H Bui, Jeffrey R Millman
{"title":"Recent progress in modeling and treating diabetes using stem cell-derived islets.","authors":"Marlie M Maestas, Maggie H Bui, Jeffrey R Millman","doi":"10.1093/stcltm/szae059","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell-derived islets (SC-islets) offer the potential to be an unlimited source of cells for disease modeling and the treatment of diabetes. SC-islets can be genetically modified, treated with chemical compounds, or differentiated from patient derived stem cells to model diabetes. These models provide insights into disease pathogenesis and vulnerabilities that may be targeted to provide treatment. SC-islets themselves are also being investigated as a cell therapy for diabetes. However, the transplantation process is imperfect; side effects from immunosuppressant use have reduced SC-islet therapeutic potential. Alternative methods to this include encapsulation, use of immunomodulating molecules, and genetic modification of SC-islets. This review covers recent advances using SC-islets to understand different diabetes pathologies and as a cell therapy.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae059","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Stem cell-derived islets (SC-islets) offer the potential to be an unlimited source of cells for disease modeling and the treatment of diabetes. SC-islets can be genetically modified, treated with chemical compounds, or differentiated from patient derived stem cells to model diabetes. These models provide insights into disease pathogenesis and vulnerabilities that may be targeted to provide treatment. SC-islets themselves are also being investigated as a cell therapy for diabetes. However, the transplantation process is imperfect; side effects from immunosuppressant use have reduced SC-islet therapeutic potential. Alternative methods to this include encapsulation, use of immunomodulating molecules, and genetic modification of SC-islets. This review covers recent advances using SC-islets to understand different diabetes pathologies and as a cell therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用干细胞胰岛建模和治疗糖尿病的最新进展。
干细胞衍生胰岛(SC-islets)为疾病建模和糖尿病治疗提供了无限的细胞来源。干细胞衍生胰岛可通过基因改造、使用化合物处理或从患者衍生干细胞分化而来,从而建立糖尿病模型。通过这些模型,可以深入了解疾病的发病机制和弱点,从而有针对性地提供治疗。目前还在研究将SC-胰岛细胞本身作为糖尿病的细胞疗法。然而,移植过程并不完美;使用免疫抑制剂产生的副作用降低了SC-小鼠的治疗潜力。替代的方法包括封装、使用免疫调节分子以及对SC-小岛进行基因改造。本综述介绍了利用SC-小岛了解不同糖尿病病理和作为细胞疗法的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem Cells Translational Medicine
Stem Cells Translational Medicine CELL & TISSUE ENGINEERING-
CiteScore
12.90
自引率
3.30%
发文量
140
审稿时长
6-12 weeks
期刊介绍: STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal. STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes. The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.
期刊最新文献
Progranulin enhances the engraftment of transplanted human iPS cell-derived cerebral neurons. eIF6 modulates skin wound healing by upregulating keratin 6B. Impact of immunosuppressive drugs on efficacy of mesenchymal stem cell therapy for suppressing renal fibrosis. Mesenchymal stromal cells-derived small extracellular vesicles protect against UV-induced photoaging via regulating pregnancy zone protein. Nose-to-brain delivery of stem cells in stroke: the role of extracellular vesicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1