Ala Balti, Abdelaziz Hamdi, Sabeur Abid, Mohamed Moncef Ben Khelifa, Mounir Sayadi
{"title":"Enhanced fingerprint classification through modified PCA with SVD and invariant moments.","authors":"Ala Balti, Abdelaziz Hamdi, Sabeur Abid, Mohamed Moncef Ben Khelifa, Mounir Sayadi","doi":"10.3389/frai.2024.1433494","DOIUrl":null,"url":null,"abstract":"<p><p>This research introduces a novel MOMENTS-SVD vector for fingerprint identification, combining invariant moments and SVD (Singular Value Decomposition), enhanced by a modified PCA (Principal Component Analysis). Our method extracts unique fingerprint features using SVD and invariant moments, followed by classification with Euclidean distance and neural networks. The MOMENTS-SVD vector reduces computational complexity by outperforming current models. Using the Equal Error Rate (EER) and ROC curve, a comparative study across databases (CASIA V5, FVC 2002, 2004, 2006) assesses our method against ResNet, VGG19, Neuro Fuzzy, DCT Features, and Invariant Moments, proving enhanced accuracy and robustness.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1433494"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1433494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This research introduces a novel MOMENTS-SVD vector for fingerprint identification, combining invariant moments and SVD (Singular Value Decomposition), enhanced by a modified PCA (Principal Component Analysis). Our method extracts unique fingerprint features using SVD and invariant moments, followed by classification with Euclidean distance and neural networks. The MOMENTS-SVD vector reduces computational complexity by outperforming current models. Using the Equal Error Rate (EER) and ROC curve, a comparative study across databases (CASIA V5, FVC 2002, 2004, 2006) assesses our method against ResNet, VGG19, Neuro Fuzzy, DCT Features, and Invariant Moments, proving enhanced accuracy and robustness.