AlphaFold2-guided engineering of split-GFP technology enables labeling of endogenous tubulins across species while preserving function.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences PLoS Biology Pub Date : 2024-08-19 eCollection Date: 2024-08-01 DOI:10.1371/journal.pbio.3002615
Kaiming Xu, Zhiyuan Li, Linfan Mao, Zhengyang Guo, Zhe Chen, Yongping Chai, Chao Xie, Xuerui Yang, Jie Na, Wei Li, Guangshuo Ou
{"title":"AlphaFold2-guided engineering of split-GFP technology enables labeling of endogenous tubulins across species while preserving function.","authors":"Kaiming Xu, Zhiyuan Li, Linfan Mao, Zhengyang Guo, Zhe Chen, Yongping Chai, Chao Xie, Xuerui Yang, Jie Na, Wei Li, Guangshuo Ou","doi":"10.1371/journal.pbio.3002615","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic properties are essential for microtubule (MT) physiology. Current techniques for in vivo imaging of MTs present intrinsic limitations in elucidating the isotype-specific nuances of tubulins, which contribute to their versatile functions. Harnessing the power of the AlphaFold2 pipeline, we engineered a strategy for the minimally invasive fluorescence labeling of endogenous tubulin isotypes or those harboring missense mutations. We demonstrated that a specifically designed 16-amino acid linker, coupled with sfGFP11 from the split-sfGFP system and integration into the H1-S2 loop of tubulin, facilitated tubulin labeling without compromising MT dynamics, embryonic development, or ciliogenesis in Caenorhabditis elegans. Extending this technique to human cells and murine oocytes, we visualized MTs with the minimal background fluorescence and a pathogenic tubulin isoform with fidelity. The utility of our approach across biological contexts and species set an additional paradigm for studying tubulin dynamics and functional specificity, with implications for understanding tubulin-related diseases known as tubulinopathies.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002615","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic properties are essential for microtubule (MT) physiology. Current techniques for in vivo imaging of MTs present intrinsic limitations in elucidating the isotype-specific nuances of tubulins, which contribute to their versatile functions. Harnessing the power of the AlphaFold2 pipeline, we engineered a strategy for the minimally invasive fluorescence labeling of endogenous tubulin isotypes or those harboring missense mutations. We demonstrated that a specifically designed 16-amino acid linker, coupled with sfGFP11 from the split-sfGFP system and integration into the H1-S2 loop of tubulin, facilitated tubulin labeling without compromising MT dynamics, embryonic development, or ciliogenesis in Caenorhabditis elegans. Extending this technique to human cells and murine oocytes, we visualized MTs with the minimal background fluorescence and a pathogenic tubulin isoform with fidelity. The utility of our approach across biological contexts and species set an additional paradigm for studying tubulin dynamics and functional specificity, with implications for understanding tubulin-related diseases known as tubulinopathies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AlphaFold2- 指导的工程化分裂-GFP 技术可在保留功能的同时标记不同物种的内源性微管蛋白。
动态特性对微管(MT)生理学至关重要。目前的 MT 体内成像技术在阐明微管蛋白同种型特异性的细微差别方面存在固有的局限性,而这些细微差别促成了微管蛋白的多种功能。利用 AlphaFold2 管道的强大功能,我们设计了一种对内源性管蛋白异型或携带错义突变的管蛋白异型进行微创荧光标记的策略。我们证明,专门设计的 16 氨基酸连接体与来自 split-sfGFP 系统的 sfGFP11 相结合,并整合到微管蛋白的 H1-S2 环中,可促进微管蛋白标记,而不会影响 MT 的动态、胚胎发育或 elegans 中纤毛的生成。将这一技术推广到人类细胞和小鼠卵母细胞后,我们用最小的背景荧光和致病性微管蛋白异构体对MT进行了可靠的可视化。我们的方法在不同生物环境和物种中的应用为研究微管蛋白动态和功能特异性提供了新的范例,对了解微管蛋白相关疾病(即微管蛋白病)具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
期刊最新文献
Gather your neurons and model together: Community times ahead. Biomedical researchers' perspectives on the reproducibility of research. Community-based reconstruction and simulation of a full-scale model of the rat hippocampus CA1 region. Harnessing plant biosynthesis for the development of next-generation therapeutics. Transcriptomic analysis of the 12 major human breast cell types reveals mechanisms of cell and tissue function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1