Random Survival Forests With Competing Events: A Subdistribution-Based Imputation Approach

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biometrical Journal Pub Date : 2024-08-20 DOI:10.1002/bimj.202400014
Charlotte Behning, Alexander Bigerl, Marvin N. Wright, Peggy Sekula, Moritz Berger, Matthias Schmid
{"title":"Random Survival Forests With Competing Events: A Subdistribution-Based Imputation Approach","authors":"Charlotte Behning,&nbsp;Alexander Bigerl,&nbsp;Marvin N. Wright,&nbsp;Peggy Sekula,&nbsp;Moritz Berger,&nbsp;Matthias Schmid","doi":"10.1002/bimj.202400014","DOIUrl":null,"url":null,"abstract":"<p>Random survival forests (RSF) can be applied to many time-to-event research questions and are particularly useful in situations where the relationship between the independent variables and the event of interest is rather complex. However, in many clinical settings, the occurrence of the event of interest is affected by competing events, which means that a patient can experience an outcome other than the event of interest. Neglecting the competing event (i.e., regarding competing events as censoring) will typically result in biased estimates of the cumulative incidence function (CIF). A popular approach for competing events is Fine and Gray's subdistribution hazard model, which directly estimates the CIF by fitting a single-event model defined on a subdistribution timescale. Here, we integrate concepts from the subdistribution hazard modeling approach into the RSF. We develop several imputation strategies that use weights as in a discrete-time subdistribution hazard model to impute censoring times in cases where a competing event is observed. Our simulations show that the CIF is well estimated if the imputation already takes place outside the forest on the overall dataset. Especially in settings with a low rate of the event of interest or a high censoring rate, competing events must not be neglected, that is, treated as censoring. When applied to a real-world epidemiological dataset on chronic kidney disease, the imputation approach resulted in highly plausible predictor–response relationships and CIF estimates of renal events.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202400014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202400014","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Random survival forests (RSF) can be applied to many time-to-event research questions and are particularly useful in situations where the relationship between the independent variables and the event of interest is rather complex. However, in many clinical settings, the occurrence of the event of interest is affected by competing events, which means that a patient can experience an outcome other than the event of interest. Neglecting the competing event (i.e., regarding competing events as censoring) will typically result in biased estimates of the cumulative incidence function (CIF). A popular approach for competing events is Fine and Gray's subdistribution hazard model, which directly estimates the CIF by fitting a single-event model defined on a subdistribution timescale. Here, we integrate concepts from the subdistribution hazard modeling approach into the RSF. We develop several imputation strategies that use weights as in a discrete-time subdistribution hazard model to impute censoring times in cases where a competing event is observed. Our simulations show that the CIF is well estimated if the imputation already takes place outside the forest on the overall dataset. Especially in settings with a low rate of the event of interest or a high censoring rate, competing events must not be neglected, that is, treated as censoring. When applied to a real-world epidemiological dataset on chronic kidney disease, the imputation approach resulted in highly plausible predictor–response relationships and CIF estimates of renal events.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有竞争事件的随机生存森林:基于子分布的估算方法
随机生存森林(RSF)可应用于许多从时间到事件的研究问题,尤其适用于自变量与相关事件之间关系相当复杂的情况。然而,在许多临床环境中,相关事件的发生会受到竞争事件的影响,这意味着患者可能会经历除相关事件之外的其他结果。忽略竞争事件(即把竞争事件视为普查)通常会导致对累积发病率函数(CIF)的估计出现偏差。针对竞争事件的一种流行方法是 Fine 和 Gray 的子分布危险模型,该模型通过拟合定义在子分布时间尺度上的单一事件模型来直接估计 CIF。在此,我们将亚分布危害建模方法的概念整合到 RSF 中。我们开发了几种估算策略,在观测到竞争事件的情况下,使用离散时间子分布危害模型中的权重来估算删减时间。我们的模拟结果表明,如果在整个数据集上的森林外已经进行了估算,那么 CIF 就能得到很好的估计。特别是在相关事件发生率较低或剔除率较高的情况下,竞争事件不应被忽视,即应被视为剔除事件。在应用于真实世界的慢性肾病流行病学数据集时,估算方法得出了高度可信的预测因子-响应关系和肾病事件的 CIF 估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
期刊最新文献
Post-Estimation Shrinkage in Full and Selected Linear Regression Models in Low-Dimensional Data Revisited Functional Data Analysis: An Introduction and Recent Developments Meta-Analysis of Diagnostic Accuracy Studies With Multiple Thresholds: Comparison of Approaches in a Simulation Study A Network-Constrain Weibull AFT Model for Biomarkers Discovery Multivariate Scalar on Multidimensional Distribution Regression With Application to Modeling the Association Between Physical Activity and Cognitive Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1