Approaching the Global Nash Equilibrium of Non-Convex Multi-Player Games

Guanpu Chen;Gehui Xu;Fengxiang He;Yiguang Hong;Leszek Rutkowski;Dacheng Tao
{"title":"Approaching the Global Nash Equilibrium of Non-Convex Multi-Player Games","authors":"Guanpu Chen;Gehui Xu;Fengxiang He;Yiguang Hong;Leszek Rutkowski;Dacheng Tao","doi":"10.1109/TPAMI.2024.3445666","DOIUrl":null,"url":null,"abstract":"Many machine learning problems can be formulated as non-convex multi-player games. Due to non-convexity, it is challenging to obtain the existence condition of the global Nash equilibrium (NE) and design theoretically guaranteed algorithms. This paper studies a class of non-convex multi-player games, where players’ payoff functions consist of canonical functions and quadratic operators. We leverage conjugate properties to transform the complementary problem into a variational inequality (VI) problem using a continuous pseudo-gradient mapping. We prove the existence condition of the global NE as the solution to the VI problem satisfies a duality relation. We then design an ordinary differential equation to approach the global NE with an exponential convergence rate. For practical implementation, we derive a discretized algorithm and apply it to two scenarios: multi-player games with generalized monotonicity and multi-player potential games. In the two settings, step sizes are required to be \n<inline-formula><tex-math>$\\mathcal {O}(1/k)$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$\\mathcal {O}(1/\\sqrt{k})$</tex-math></inline-formula>\n to yield the convergence rates of \n<inline-formula><tex-math>$\\mathcal {O}(1/ k)$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$\\mathcal {O}(1/\\sqrt{k})$</tex-math></inline-formula>\n, respectively. Extensive experiments on robust neural network training and sensor network localization validate our theory. Our code is available at \n<uri>https://github.com/GuanpuChen/Global-NE</uri>\n.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"46 12","pages":"10797-10813"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10638825/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many machine learning problems can be formulated as non-convex multi-player games. Due to non-convexity, it is challenging to obtain the existence condition of the global Nash equilibrium (NE) and design theoretically guaranteed algorithms. This paper studies a class of non-convex multi-player games, where players’ payoff functions consist of canonical functions and quadratic operators. We leverage conjugate properties to transform the complementary problem into a variational inequality (VI) problem using a continuous pseudo-gradient mapping. We prove the existence condition of the global NE as the solution to the VI problem satisfies a duality relation. We then design an ordinary differential equation to approach the global NE with an exponential convergence rate. For practical implementation, we derive a discretized algorithm and apply it to two scenarios: multi-player games with generalized monotonicity and multi-player potential games. In the two settings, step sizes are required to be $\mathcal {O}(1/k)$ and $\mathcal {O}(1/\sqrt{k})$ to yield the convergence rates of $\mathcal {O}(1/ k)$ and $\mathcal {O}(1/\sqrt{k})$ , respectively. Extensive experiments on robust neural network training and sensor network localization validate our theory. Our code is available at https://github.com/GuanpuChen/Global-NE .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
接近非凸多人游戏的全局纳什均衡
许多机器学习问题都可以表述为非凸多玩家博弈。由于非凸性,获得全局纳什均衡(NE)的存在条件和设计理论上有保证的算法是一项挑战。本文研究了一类非凸多玩家博弈,其中玩家的报酬函数由典型函数和二次算子组成。我们利用共轭特性,使用连续伪梯度映射将互补问题转化为变不等式(VI)问题。我们证明了全局 NE 的存在条件,因为 VI 问题的解满足对偶关系。然后,我们设计了一个常微分方程,以指数收敛速度逼近全局近似值。在实际应用中,我们推导出一种离散化算法,并将其应用于两种情况:具有广义单调性的多人博弈和多人潜在博弈。在这两种情况下,步长要求分别为 O(1/k) 和 O(1/√k),收敛率分别为 O(1/k) 和 O(1/√k)。鲁棒神经网络训练和传感器网络定位的大量实验验证了我们的理论。我们的代码见 https://github.com/GuanpuChen/Global-NE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language-Inspired Relation Transfer for Few-Shot Class-Incremental Learning. Multi-Modality Multi-Attribute Contrastive Pre-Training for Image Aesthetics Computing. 360SFUDA++: Towards Source-Free UDA for Panoramic Segmentation by Learning Reliable Category Prototypes. Anti-Forgetting Adaptation for Unsupervised Person Re-Identification. Evolved Hierarchical Masking for Self-Supervised Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1