Yongmao Ren , Yundong Zhang , Ming Yin , Anmin Xu , Xu Zhou , Cong Li , Yifang Qin , Qinghua Wu , Mohamed Ali Kaafar , Gaogang Xie
{"title":"DRTP: A generic Differentiated Reliable Transport Protocol","authors":"Yongmao Ren , Yundong Zhang , Ming Yin , Anmin Xu , Xu Zhou , Cong Li , Yifang Qin , Qinghua Wu , Mohamed Ali Kaafar , Gaogang Xie","doi":"10.1016/j.comcom.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>With rapid development of network communications, the performance requirements of applications are getting more differentiated. Many applications like high-definition video transfer require high throughput but do tolerate occasional packet losses. Traditional generic transport protocols however, only provide inflexible data transfer guarantees (TCP (Transmission Control Protocol) offers full reliability guarantees and UDP (User Datagram Protocol) offers no guarantees). Moreover, TCP pays a significant price to ensure a full reliability guarantee over lossy wireless communications environment like 5G millimeter wave (mmWave) communications. While existing, “partially” reliable transport protocols are either specifically designed for certain applications or need router’s support. In this paper, we design a new generic Differentiated Reliable Transport Protocol (DRTP), aiming to provide a differentiated and deterministic reliability guarantee for upper layer applications while maximizing the throughput under the constraint of guaranteeing a required reliability of data transfer. DRTP is a generic and pure end-to-end partially reliable transport protocol, and as such is easy to deploy regardless of the application in use and with no need for router’s support. The performance of DRTP is evaluated under various network conditions using extensive NS-3 (Network Simulator) simulations and practical experiments over the mmWave communications environment. The results show much higher throughput compared to typical transport protocols while guaranteeing the required transfer reliability.</p></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"226 ","pages":"Article 107921"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366424002603","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With rapid development of network communications, the performance requirements of applications are getting more differentiated. Many applications like high-definition video transfer require high throughput but do tolerate occasional packet losses. Traditional generic transport protocols however, only provide inflexible data transfer guarantees (TCP (Transmission Control Protocol) offers full reliability guarantees and UDP (User Datagram Protocol) offers no guarantees). Moreover, TCP pays a significant price to ensure a full reliability guarantee over lossy wireless communications environment like 5G millimeter wave (mmWave) communications. While existing, “partially” reliable transport protocols are either specifically designed for certain applications or need router’s support. In this paper, we design a new generic Differentiated Reliable Transport Protocol (DRTP), aiming to provide a differentiated and deterministic reliability guarantee for upper layer applications while maximizing the throughput under the constraint of guaranteeing a required reliability of data transfer. DRTP is a generic and pure end-to-end partially reliable transport protocol, and as such is easy to deploy regardless of the application in use and with no need for router’s support. The performance of DRTP is evaluated under various network conditions using extensive NS-3 (Network Simulator) simulations and practical experiments over the mmWave communications environment. The results show much higher throughput compared to typical transport protocols while guaranteeing the required transfer reliability.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.