Yanxiao Sun , Jiang Wu , Maosheng Jiang , Steven M. Wise , Zhenlin Guo
{"title":"A thermodynamically consistent phase-field model and an entropy stable numerical method for simulating two-phase flows with thermocapillary effects","authors":"Yanxiao Sun , Jiang Wu , Maosheng Jiang , Steven M. Wise , Zhenlin Guo","doi":"10.1016/j.apnum.2024.08.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we have derived a thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects. This model accommodates variations in physical properties such as density, viscosity, heat capacity, and thermal conductivity between the two components. The model equations encompass a Cahn-Hilliard equation with the volume fraction as the phase variable, a Navier-Stokes equation, and a heat equation, and meanwhile maintains mass conservation, energy conservation, and entropy increase simultaneously. Given the highly coupled and nonlinear nature of the model equations, we developed a semi-decoupled, mass-preserving, and entropy-stable time-discrete numerical method. We conducted several numerical tests to validate both our model and numerical method. Additionally, we have investigated the merging process of two bubbles under non-isothermal conditions and compared the results with those under isothermal conditions. Our findings reveal that temperature gradients influence bubble morphology and lead to earlier merging. Moreover, we have observed that the merging of bubbles slows down with increasing heat Peclect number <span><math><msub><mrow><mi>Pe</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> when the initial temperature field increases linearly along the channel, while bubbles merge faster with heat Peclect number <span><math><msub><mrow><mi>Pe</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> when the initial temperature field decreases linearly along the channel.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"206 ","pages":"Pages 161-189"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016892742400206X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we have derived a thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects. This model accommodates variations in physical properties such as density, viscosity, heat capacity, and thermal conductivity between the two components. The model equations encompass a Cahn-Hilliard equation with the volume fraction as the phase variable, a Navier-Stokes equation, and a heat equation, and meanwhile maintains mass conservation, energy conservation, and entropy increase simultaneously. Given the highly coupled and nonlinear nature of the model equations, we developed a semi-decoupled, mass-preserving, and entropy-stable time-discrete numerical method. We conducted several numerical tests to validate both our model and numerical method. Additionally, we have investigated the merging process of two bubbles under non-isothermal conditions and compared the results with those under isothermal conditions. Our findings reveal that temperature gradients influence bubble morphology and lead to earlier merging. Moreover, we have observed that the merging of bubbles slows down with increasing heat Peclect number when the initial temperature field increases linearly along the channel, while bubbles merge faster with heat Peclect number when the initial temperature field decreases linearly along the channel.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.