Advancements in Q‐learning meta‐heuristic optimization algorithms: A survey

Yang Yang, Yuchao Gao, Zhe Ding, Jinran Wu, Shaotong Zhang, Feifei Han, Xuelan Qiu, Shangce Gao, You‐Gan Wang
{"title":"Advancements in Q‐learning meta‐heuristic optimization algorithms: A survey","authors":"Yang Yang, Yuchao Gao, Zhe Ding, Jinran Wu, Shaotong Zhang, Feifei Han, Xuelan Qiu, Shangce Gao, You‐Gan Wang","doi":"10.1002/widm.1548","DOIUrl":null,"url":null,"abstract":"This paper reviews the integration of Q‐learning with meta‐heuristic algorithms (QLMA) over the last 20 years, highlighting its success in solving complex optimization problems. We focus on key aspects of QLMA, including parameter adaptation, operator selection, and balancing global exploration with local exploitation. QLMA has become a leading solution in industries like energy, power systems, and engineering, addressing a range of mathematical challenges. Looking forward, we suggest further exploration of meta‐heuristic integration, transfer learning strategies, and techniques to reduce state space.This article is categorized under:<jats:list list-type=\"simple\"> <jats:list-item>Technologies &gt; Computational Intelligence</jats:list-item> <jats:list-item>Technologies &gt; Artificial Intelligence</jats:list-item> </jats:list>","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.1548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reviews the integration of Q‐learning with meta‐heuristic algorithms (QLMA) over the last 20 years, highlighting its success in solving complex optimization problems. We focus on key aspects of QLMA, including parameter adaptation, operator selection, and balancing global exploration with local exploitation. QLMA has become a leading solution in industries like energy, power systems, and engineering, addressing a range of mathematical challenges. Looking forward, we suggest further exploration of meta‐heuristic integration, transfer learning strategies, and techniques to reduce state space.This article is categorized under: Technologies > Computational Intelligence Technologies > Artificial Intelligence
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Q-learning 元启发式优化算法的进展:调查
本文回顾了 Q-learning 与元启发式算法(QLMA)在过去 20 年中的整合情况,重点介绍了 Q-learning 在解决复杂优化问题方面取得的成功。我们将重点放在 QLMA 的关键方面,包括参数适应、算子选择以及平衡全局探索与局部开发。QLMA 已成为能源、电力系统和工程等行业的领先解决方案,解决了一系列数学难题。展望未来,我们建议进一步探索元启发式集成、迁移学习策略和缩小状态空间的技术:技术> 计算智能技术> 人工智能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trace Encoding Techniques for Multi‐Perspective Process Mining: A Comparative Study Hyper‐Parameter Optimization of Kernel Functions on Multi‐Class Text Categorization: A Comparative Evaluation Dimensionality Reduction for Data Analysis With Quantum Feature Learning Business Analytics in Customer Lifetime Value: An Overview Analysis Knowledge Graph for Solubility Big Data: Construction and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1