GMMID: genetically modified mice information database.

IF 3.4 4区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Database: The Journal of Biological Databases and Curation Pub Date : 2024-08-19 DOI:10.1093/database/baae078
Menglin Xu, Minghui Fang, Qiyang Chen, Wenjun Xiao, Zhixuan Xu, Bao Cai, Zhenyang Zhao, Tao Wang, Zhu Zhu, Yingshan Chen, Yue Zhu, Mingzhou Dai, Tiancheng Jiang, Xinyi Li, Siuwing Chun, Runhua Zhou, Yafei Li, Yueyue Gou, Jingjing He, Lin Luo, Linlin You, Xuan Jiang
{"title":"GMMID: genetically modified mice information database.","authors":"Menglin Xu, Minghui Fang, Qiyang Chen, Wenjun Xiao, Zhixuan Xu, Bao Cai, Zhenyang Zhao, Tao Wang, Zhu Zhu, Yingshan Chen, Yue Zhu, Mingzhou Dai, Tiancheng Jiang, Xinyi Li, Siuwing Chun, Runhua Zhou, Yafei Li, Yueyue Gou, Jingjing He, Lin Luo, Linlin You, Xuan Jiang","doi":"10.1093/database/baae078","DOIUrl":null,"url":null,"abstract":"<p><p>Genetically engineered mouse models (GEMMs) are vital for elucidating gene function and disease mechanisms. An overwhelming number of GEMM lines have been generated, but endeavors to collect and organize the information of these GEMMs are seriously lagging behind. Only a few databases are developed for the information of current GEMMs, and these databases lack biological descriptions of allele compositions, which poses a challenge for nonexperts in mouse genetics to interpret the genetic information of these mice. Moreover, these databases usually do not provide information on human diseases related to the GEMM, which hinders the dissemination of the insights the GEMM provides as a human disease model. To address these issues, we developed an algorithm to annotate all the allele compositions that have been reported with Python programming and have developed the genetically modified mice information database (GMMID; http://www.gmmid.cn), a user-friendly database that integrates information on GEMMs and related diseases from various databases, including National Center for Biotechnology Information, Mouse Genome Informatics, Online Mendelian Inheritance in Man, International Mouse Phenotyping Consortium, and Jax lab. GMMID provides comprehensive genetic information on >70 055 alleles, 65 520 allele compositions, and ∼4000 diseases, along with biologically meaningful descriptions of alleles and allele combinations. Furthermore, it provides spatiotemporal visualization of anatomical tissues mentioned in these descriptions, shown alongside the allele compositions. Compared to existing mouse databases, GMMID considers the needs of researchers across different disciplines and presents obscure genetic information in an intuitive and easy-to-understand format. It facilitates users in obtaining complete genetic information more efficiently, making it an essential resource for cross-disciplinary researchers. Database URL: http://www.gmmid.cn.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae078","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genetically engineered mouse models (GEMMs) are vital for elucidating gene function and disease mechanisms. An overwhelming number of GEMM lines have been generated, but endeavors to collect and organize the information of these GEMMs are seriously lagging behind. Only a few databases are developed for the information of current GEMMs, and these databases lack biological descriptions of allele compositions, which poses a challenge for nonexperts in mouse genetics to interpret the genetic information of these mice. Moreover, these databases usually do not provide information on human diseases related to the GEMM, which hinders the dissemination of the insights the GEMM provides as a human disease model. To address these issues, we developed an algorithm to annotate all the allele compositions that have been reported with Python programming and have developed the genetically modified mice information database (GMMID; http://www.gmmid.cn), a user-friendly database that integrates information on GEMMs and related diseases from various databases, including National Center for Biotechnology Information, Mouse Genome Informatics, Online Mendelian Inheritance in Man, International Mouse Phenotyping Consortium, and Jax lab. GMMID provides comprehensive genetic information on >70 055 alleles, 65 520 allele compositions, and ∼4000 diseases, along with biologically meaningful descriptions of alleles and allele combinations. Furthermore, it provides spatiotemporal visualization of anatomical tissues mentioned in these descriptions, shown alongside the allele compositions. Compared to existing mouse databases, GMMID considers the needs of researchers across different disciplines and presents obscure genetic information in an intuitive and easy-to-understand format. It facilitates users in obtaining complete genetic information more efficiently, making it an essential resource for cross-disciplinary researchers. Database URL: http://www.gmmid.cn.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GMMID:转基因小鼠信息数据库。
基因工程小鼠模型(GEMM)对于阐明基因功能和疾病机制至关重要。目前已产生了大量基因工程小鼠品系,但收集和整理这些基因工程小鼠信息的工作却严重滞后。目前,只有少数几个数据库是为当前的 GEMMs 信息开发的,这些数据库缺乏等位基因组成的生物学描述,这给非小鼠遗传学专家解读这些小鼠的遗传信息带来了挑战。此外,这些数据库通常不提供与 GEMM 相关的人类疾病信息,这阻碍了 GEMM 作为人类疾病模型所提供的见解的传播。为了解决这些问题,我们开发了一种算法,用Python编程注释所有已报道的等位基因组成,并开发了转基因小鼠信息数据库(GMMID; http://www.gmmid.cn),这是一个用户友好型数据库,整合了美国国家生物技术信息中心、小鼠基因组信息学、在线人类孟德尔遗传、国际小鼠表型协会和Jax实验室等各种数据库中有关GEMM和相关疾病的信息。GMMID 提供超过 70 055 个等位基因、65 520 个等位基因组合和 4000 种疾病的全面遗传信息,以及等位基因和等位基因组合的生物学意义描述。此外,它还提供了这些描述中提到的解剖组织的时空可视化,与等位基因组合一起显示。与现有的小鼠数据库相比,GMMID 考虑到了不同学科研究人员的需求,以直观易懂的格式呈现了晦涩难懂的遗传信息。它便于用户更高效地获取完整的遗传信息,是跨学科研究人员的必备资源。数据库网址:http://www.gmmid.cn.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
9.00
自引率
3.40%
发文量
100
审稿时长
>12 weeks
期刊介绍: Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data. Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.
期刊最新文献
GeniePool 2.0: advancing variant analysis through CHM13-T2T, AlphaMissense, gnomAD V4 integration, and variant co-occurrence queries. AneRBC dataset: a benchmark dataset for computer-aided anemia diagnosis using RBC images. MiCK: a database of gut microbial genes linked with chemoresistance in cancer patients. JTIS: enhancing biomedical document-level relation extraction through joint training with intermediate steps. scEccDNAdb: an integrated single-cell eccDNA resource for human and mouse.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1