{"title":"Electrostatically self-assembled gold nanorods with sulfated hyaluronic acid for targeted photothermal therapy for CD44-positive tumors","authors":"Toshie Tanaka PhD, Kohei Sano PhD, Rin Kawakami BS, Shiho Tanaka BS, Masayuki Munekane PhD, Toshihide Yamasaki PhD, Takahiro Mukai PhD","doi":"10.1016/j.nano.2024.102781","DOIUrl":null,"url":null,"abstract":"<div><p>Gold nanorods (GNR) produce heat upon irradiation with near-infrared light, enabling a tumor-targeted photothermal therapy. In this study, we prepared GNR coated with sulfated hyaluronic acid (sHA) with a binding affinity for CD44 via electrostatic interactions to deliver GNR to tumors efficiently and stably, and evaluated their usefulness for photothermal therapy. Cationic GNR modified with trimethylammonium groups electrostatically interacted with native HA or sHA with varying degrees of sulfation to form complexes. While GNR/HA was unstable in saline, GNR/sHA maintained the absorbance peak in the near-infrared region, particularly for GNR/sHA with higher degrees of sulfation. GNR/sHA exhibited an intense photothermal effect upon irradiation with near-infrared light. Furthermore, in vitro and in vivo studies revealed that GNR coated with sHA containing approximately 1.2 sulfated groups per HA unit could accumulate in CD44-positive tumors via an HA-specific pathway. These findings indicate the effectiveness of GNR/sHA as a tumor-targeted photothermal therapeutic agent.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102781"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963424000509","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gold nanorods (GNR) produce heat upon irradiation with near-infrared light, enabling a tumor-targeted photothermal therapy. In this study, we prepared GNR coated with sulfated hyaluronic acid (sHA) with a binding affinity for CD44 via electrostatic interactions to deliver GNR to tumors efficiently and stably, and evaluated their usefulness for photothermal therapy. Cationic GNR modified with trimethylammonium groups electrostatically interacted with native HA or sHA with varying degrees of sulfation to form complexes. While GNR/HA was unstable in saline, GNR/sHA maintained the absorbance peak in the near-infrared region, particularly for GNR/sHA with higher degrees of sulfation. GNR/sHA exhibited an intense photothermal effect upon irradiation with near-infrared light. Furthermore, in vitro and in vivo studies revealed that GNR coated with sHA containing approximately 1.2 sulfated groups per HA unit could accumulate in CD44-positive tumors via an HA-specific pathway. These findings indicate the effectiveness of GNR/sHA as a tumor-targeted photothermal therapeutic agent.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.