Electroacupuncture attenuates depressive-like behaviors in poststroke depression mice through promoting hippocampal neurogenesis and inhibiting TLR4/NF-κB/NLRP3 signaling pathway.

IF 1.6 4区 医学 Q4 NEUROSCIENCES Neuroreport Pub Date : 2024-10-02 Epub Date: 2024-08-28 DOI:10.1097/WNR.0000000000002088
Ming Li, Fang Yang, Xiaoling Zhang, Hong Yang, Xingjin He, Zhongnan Mao, Liya Mao
{"title":"Electroacupuncture attenuates depressive-like behaviors in poststroke depression mice through promoting hippocampal neurogenesis and inhibiting TLR4/NF-κB/NLRP3 signaling pathway.","authors":"Ming Li, Fang Yang, Xiaoling Zhang, Hong Yang, Xingjin He, Zhongnan Mao, Liya Mao","doi":"10.1097/WNR.0000000000002088","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to investigate the impact and underlying molecular mechanisms of electroacupuncture on mice with poststroke depression (PSD). Mice were randomly allocated into sham, PSD, and electroacupuncture groups. Mice in the PSD and electroacupuncture groups underwent middle cerebral artery occlusion (MCAO) surgery following with sedentary behavior. Electroacupuncture targeting Zusanli (ST36) acupoint was performed 24 h after MCAO for 4 weeks in electroacupuncture group. The sucrose preference test, forced swimming test, open field test, tail suspension test, elevated plus maze, Catwalk analysis, RNA sequencing, Nissl staining, Golgi staining, TUNEL staining, Edu labeling, and doublecortin staining were performed. Lymphocyte subsets in peripheral blood and the levels of IL-1β, IL-6, TNF-α, and expression of Iba1/CD86, Iba1/NLRP3, TLR4/p38/NF-κB/NLRP3 pathways in the hippocampus were detected. Electroacupuncture effectively protected against the development of depression-like symptoms. The number of granulosa cells and doublecortin-positive cells in the dentate gyrus (DG) were significantly decreased in PSD group, which were significantly upregulated ( P  < 0.01) by electroacupuncture. Electroacupuncture also significantly reduced ( P  < 0.05) TUNEL-positive cells in the DG and CA1. RNA-seq revealed that electroacupuncture may exert antidepressant effect by regulating the inflammation mediated by TLR4/NF-κB/NLRP3 pathway in hippocampus. Electroacupuncture remarkably elevated ( P  < 0.01) the ratio of CD4+ to CD8+ T cells and percentage of CD3-CD49b+ cells in CD45+CD49b+ cells in the peripheral blood. Electroacupuncture significantly reduced ( P  < 0.05) the high levels of IL-1β, IL-6, TNF-α, iba1, TLR4, p-p38, p-NF-κB, and NLRP3 and sedentary behavior. Electroacupuncture was observed to mitigate depression symptoms and increase hippocampal neurogenesis in mice with PSD, possibly by inhibiting TLR4/p38/NF-κB/NLRP3 pathways and improving the microglia-mediated inflammatory microenvironment in the hippocampus.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361353/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002088","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to investigate the impact and underlying molecular mechanisms of electroacupuncture on mice with poststroke depression (PSD). Mice were randomly allocated into sham, PSD, and electroacupuncture groups. Mice in the PSD and electroacupuncture groups underwent middle cerebral artery occlusion (MCAO) surgery following with sedentary behavior. Electroacupuncture targeting Zusanli (ST36) acupoint was performed 24 h after MCAO for 4 weeks in electroacupuncture group. The sucrose preference test, forced swimming test, open field test, tail suspension test, elevated plus maze, Catwalk analysis, RNA sequencing, Nissl staining, Golgi staining, TUNEL staining, Edu labeling, and doublecortin staining were performed. Lymphocyte subsets in peripheral blood and the levels of IL-1β, IL-6, TNF-α, and expression of Iba1/CD86, Iba1/NLRP3, TLR4/p38/NF-κB/NLRP3 pathways in the hippocampus were detected. Electroacupuncture effectively protected against the development of depression-like symptoms. The number of granulosa cells and doublecortin-positive cells in the dentate gyrus (DG) were significantly decreased in PSD group, which were significantly upregulated ( P  < 0.01) by electroacupuncture. Electroacupuncture also significantly reduced ( P  < 0.05) TUNEL-positive cells in the DG and CA1. RNA-seq revealed that electroacupuncture may exert antidepressant effect by regulating the inflammation mediated by TLR4/NF-κB/NLRP3 pathway in hippocampus. Electroacupuncture remarkably elevated ( P  < 0.01) the ratio of CD4+ to CD8+ T cells and percentage of CD3-CD49b+ cells in CD45+CD49b+ cells in the peripheral blood. Electroacupuncture significantly reduced ( P  < 0.05) the high levels of IL-1β, IL-6, TNF-α, iba1, TLR4, p-p38, p-NF-κB, and NLRP3 and sedentary behavior. Electroacupuncture was observed to mitigate depression symptoms and increase hippocampal neurogenesis in mice with PSD, possibly by inhibiting TLR4/p38/NF-κB/NLRP3 pathways and improving the microglia-mediated inflammatory microenvironment in the hippocampus.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电针通过促进海马神经发生和抑制TLR4/NF-κB/NLRP3信号通路减轻中风后抑郁小鼠的抑郁样行为
本研究旨在探讨电针对卒中后抑郁(PSD)小鼠的影响及其分子机制。小鼠被随机分为假组、PSD 组和电针组。PSD组和电针组的小鼠在接受大脑中动脉闭塞(MCAO)手术后出现静坐行为。电针组小鼠在 MCAO 术后 24 小时对足三里(ST36)穴位进行电针,连续 4 周。对电针组患者进行了蔗糖偏好试验、强迫游泳试验、开阔地试验、尾悬试验、高架迷宫、Catwalk分析、RNA测序、Nissl染色、高尔基体染色、TUNEL染色、Edu标记和双皮质素染色。检测了外周血淋巴细胞亚群和海马中IL-1β、IL-6、TNF-α的水平,以及Iba1/CD86、Iba1/NLRP3、TLR4/p38/NF-κB/NLRP3通路的表达。电针能有效防止抑郁症状的发展。PSD组海马齿状回(DG)颗粒细胞和双皮质素阳性细胞数量明显减少,而PSD组海马齿状回(DG)颗粒细胞和双皮质素阳性细胞数量明显增加(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroreport
Neuroreport 医学-神经科学
CiteScore
3.20
自引率
0.00%
发文量
150
审稿时长
1 months
期刊介绍: NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool. The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works. We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.
期刊最新文献
Centrally administered growth hormone secretagogue receptor antagonist DLys decreases alcohol intake and preference in male mice. Electroacupuncture attenuates depressive-like behaviors in poststroke depression mice through promoting hippocampal neurogenesis and inhibiting TLR4/NF-κB/NLRP3 signaling pathway. Ginsenoside Rg1 protects the blood-brain barrier and myelin sheath to prevent postoperative cognitive dysfunction in aged mice. Glutamic acid decarboxylase immunoreactivity in the olfactory bulb of a reptile. How does musical rhythm influence grammatical processing at the neurophysiological level?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1