{"title":"Leveraging artificial intelligence for better translation of fibre-based pharmaceutical systems into real-world benefits.","authors":"Francis Brako, Makuochi Nkwo","doi":"10.1080/10837450.2024.2395422","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing prominence of biologics in the pharmaceutical market requires more advanced delivery systems to deliver these delicate and complex drug molecules for better therapeutic outcomes. Fibre technology has emerged as a promising approach for creating controlled and targeted drug delivery systems. Fibre-based drug delivery systems offer unprecedented opportunities for improving drug administration, fine-tuning release profiles, and advancing the realm of personalized medicine. These applications range from localized delivery at specific tissue sites to systemic drug administration while safeguarding the stability and integrity of delicate therapeutic compounds. Notwithstanding the promise of fibre-based drug delivery, several challenges such as non-scalability impede cost-effectiveness in the mass production of fibre systems. Biocompatibility and toxicity concerns must also be addressed. Furthermore, issues relating to stability, in-vitro in-vivo correlations, degradation rates, and by-product safety present additional hurdles. Pharmacoinformatics shows the impact of technologies in pharmaceutical processes. Emerging technologies such as Artificial Intelligence (AI) are a transformative force, progressively being applied to enhance various facets of pharmacy, medication development, and clinical healthcare support. However, there is a dearth of studies about the integration of AI in facilitating the translation of predominantly lab-scale pharmaceutical technologies into real-world healthcare interventions. This article explores the application of AI in fibre technology, its potential, challenges, and practical applications within the pharmaceutical field. Through a comprehensive analysis, it presents how the immense capabilities of AI can be leveraged with existing fibre technologies to revolutionize drug delivery and shape the future of therapeutic interventions by enhancing scalability, material integrity, synthesis, and development.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"793-804"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2395422","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing prominence of biologics in the pharmaceutical market requires more advanced delivery systems to deliver these delicate and complex drug molecules for better therapeutic outcomes. Fibre technology has emerged as a promising approach for creating controlled and targeted drug delivery systems. Fibre-based drug delivery systems offer unprecedented opportunities for improving drug administration, fine-tuning release profiles, and advancing the realm of personalized medicine. These applications range from localized delivery at specific tissue sites to systemic drug administration while safeguarding the stability and integrity of delicate therapeutic compounds. Notwithstanding the promise of fibre-based drug delivery, several challenges such as non-scalability impede cost-effectiveness in the mass production of fibre systems. Biocompatibility and toxicity concerns must also be addressed. Furthermore, issues relating to stability, in-vitro in-vivo correlations, degradation rates, and by-product safety present additional hurdles. Pharmacoinformatics shows the impact of technologies in pharmaceutical processes. Emerging technologies such as Artificial Intelligence (AI) are a transformative force, progressively being applied to enhance various facets of pharmacy, medication development, and clinical healthcare support. However, there is a dearth of studies about the integration of AI in facilitating the translation of predominantly lab-scale pharmaceutical technologies into real-world healthcare interventions. This article explores the application of AI in fibre technology, its potential, challenges, and practical applications within the pharmaceutical field. Through a comprehensive analysis, it presents how the immense capabilities of AI can be leveraged with existing fibre technologies to revolutionize drug delivery and shape the future of therapeutic interventions by enhancing scalability, material integrity, synthesis, and development.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.