Adenosine diphosphate released from stressed cells triggers mitochondrial transfer to achieve tissue homeostasis.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences PLoS Biology Pub Date : 2024-08-20 eCollection Date: 2024-08-01 DOI:10.1371/journal.pbio.3002753
Hao Li, Hongping Yu, Delin Liu, Peng Liao, Chuan Gao, Jian Zhou, Jialun Mei, Yao Zong, Peng Ding, Meng Yao, Bingqi Wang, Yafei Lu, Yigang Huang, Youshui Gao, Changqing Zhang, Minghao Zheng, Junjie Gao
{"title":"Adenosine diphosphate released from stressed cells triggers mitochondrial transfer to achieve tissue homeostasis.","authors":"Hao Li, Hongping Yu, Delin Liu, Peng Liao, Chuan Gao, Jian Zhou, Jialun Mei, Yao Zong, Peng Ding, Meng Yao, Bingqi Wang, Yafei Lu, Yigang Huang, Youshui Gao, Changqing Zhang, Minghao Zheng, Junjie Gao","doi":"10.1371/journal.pbio.3002753","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-to-cell mitochondrial transfer has recently been shown to play a role in maintaining physiological functions of cell. We previously illustrated that mitochondrial transfer within osteocyte dendritic network regulates bone tissue homeostasis. However, the mechanism of triggering this process has not been explored. Here, we showed that stressed osteocytes in mice release adenosine diphosphate (ADP), resulting in triggering mitochondrial transfer from healthy osteocytes to restore the oxygen consumption rate (OCR) and to alleviate reactive oxygen species accumulation. Furthermore, we identified that P2Y2 and P2Y6 transduced the ADP signal to regulate osteocyte mitochondrial transfer. We showed that mitochondrial metabolism is impaired in aged osteocytes, and there were more extracellular nucleotides release into the matrix in aged cortical bone due to compromised membrane integrity. Conditioned medium from aged osteocytes triggered mitochondrial transfer between osteocytes to enhance the energy metabolism. Together, using osteocyte as an example, this study showed new insights into how extracellular ADP triggers healthy cells to rescue energy metabolism crisis in stressed cells via mitochondrial transfer in tissue homeostasis.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002753","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Cell-to-cell mitochondrial transfer has recently been shown to play a role in maintaining physiological functions of cell. We previously illustrated that mitochondrial transfer within osteocyte dendritic network regulates bone tissue homeostasis. However, the mechanism of triggering this process has not been explored. Here, we showed that stressed osteocytes in mice release adenosine diphosphate (ADP), resulting in triggering mitochondrial transfer from healthy osteocytes to restore the oxygen consumption rate (OCR) and to alleviate reactive oxygen species accumulation. Furthermore, we identified that P2Y2 and P2Y6 transduced the ADP signal to regulate osteocyte mitochondrial transfer. We showed that mitochondrial metabolism is impaired in aged osteocytes, and there were more extracellular nucleotides release into the matrix in aged cortical bone due to compromised membrane integrity. Conditioned medium from aged osteocytes triggered mitochondrial transfer between osteocytes to enhance the energy metabolism. Together, using osteocyte as an example, this study showed new insights into how extracellular ADP triggers healthy cells to rescue energy metabolism crisis in stressed cells via mitochondrial transfer in tissue homeostasis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受压细胞释放的二磷酸腺苷会触发线粒体转移,以实现组织平衡。
细胞间线粒体转移最近被证明在维持细胞生理功能方面发挥作用。我们以前曾指出,线粒体在骨细胞树突网络内的转移调节着骨组织的平衡。然而,引发这一过程的机制尚未探明。在这里,我们发现小鼠受压骨细胞会释放二磷酸腺苷(ADP),从而引发健康骨细胞的线粒体转移,以恢复耗氧率(OCR)并缓解活性氧积累。此外,我们还发现 P2Y2 和 P2Y6 可转导 ADP 信号以调节骨细胞线粒体转移。我们发现老化骨细胞的线粒体代谢受损,由于膜完整性受损,老化皮质骨中有更多的胞外核苷酸释放到基质中。来自老化骨细胞的条件培养基可触发骨细胞间的线粒体转移,从而增强能量代谢。总之,这项研究以骨细胞为例,揭示了细胞外ADP如何通过线粒体转移在组织稳态中触发健康细胞挽救受压细胞的能量代谢危机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
期刊最新文献
Gather your neurons and model together: Community times ahead. Biomedical researchers' perspectives on the reproducibility of research. Community-based reconstruction and simulation of a full-scale model of the rat hippocampus CA1 region. Harnessing plant biosynthesis for the development of next-generation therapeutics. Transcriptomic analysis of the 12 major human breast cell types reveals mechanisms of cell and tissue function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1