A new approach for software-simulation of membrane systems using a multi-thread programming model

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-10 DOI:10.1016/j.simpat.2024.103007
Daniel Cascado-Caballero , Fernando Diaz-del-Rio , Daniel Cagigas-Muñiz , David Orellana-Martín , Ignacio Pérez-Hurtado
{"title":"A new approach for software-simulation of membrane systems using a multi-thread programming model","authors":"Daniel Cascado-Caballero ,&nbsp;Fernando Diaz-del-Rio ,&nbsp;Daniel Cagigas-Muñiz ,&nbsp;David Orellana-Martín ,&nbsp;Ignacio Pérez-Hurtado","doi":"10.1016/j.simpat.2024.103007","DOIUrl":null,"url":null,"abstract":"<div><p>The evolution of simulation and implementation of P systems has been intense since the theoretical model of computation was created. In the field of software simulation of P systems, the proposals made so far have taken advantage mainly of the parallelism of GPUs, but not of the parallelism of existing multi-core processors. This paper proposes a new model for simulating P systems using a multi-threaded approach in a multi-core processor. This simulation approach establishes a new paradigm that is entirely in line with the philosophy of P-systems: since objects must react in parallel, asynchronously and autonomously with other objects, simulation using multiple synchronized threads completely mimics the behavior of objects within a membrane. This proposal has been implemented and tested using a simulator programmed in C#, and its correct operation has been tested for confluent and non-confluent systems. The experimental results confirm that the simulator scales well with the number of hardware threads of a multiprocessor. The obtained results show that the new model is correct and that it can be extended to other more complex types of P systems, in order to discover which are the limit of this multi-threaded approach when running it in multi-core processors.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24001217/pdfft?md5=051d2b5a0e4f14a254b5d9b67b0b861e&pid=1-s2.0-S1569190X24001217-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24001217","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of simulation and implementation of P systems has been intense since the theoretical model of computation was created. In the field of software simulation of P systems, the proposals made so far have taken advantage mainly of the parallelism of GPUs, but not of the parallelism of existing multi-core processors. This paper proposes a new model for simulating P systems using a multi-threaded approach in a multi-core processor. This simulation approach establishes a new paradigm that is entirely in line with the philosophy of P-systems: since objects must react in parallel, asynchronously and autonomously with other objects, simulation using multiple synchronized threads completely mimics the behavior of objects within a membrane. This proposal has been implemented and tested using a simulator programmed in C#, and its correct operation has been tested for confluent and non-confluent systems. The experimental results confirm that the simulator scales well with the number of hardware threads of a multiprocessor. The obtained results show that the new model is correct and that it can be extended to other more complex types of P systems, in order to discover which are the limit of this multi-threaded approach when running it in multi-core processors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多线程编程模型进行膜系统软件模拟的新方法
自计算理论模型诞生以来,P 系统的仿真和实现就一直在不断发展。在 P 系统的软件仿真领域,迄今为止提出的建议主要利用了 GPU 的并行性,而没有利用现有多核处理器的并行性。本文提出了一种在多核处理器中使用多线程方法模拟 P 系统的新模型。这种仿真方法建立了一种完全符合 P 系统理念的新范式:由于对象必须与其他对象并行、异步和自主地做出反应,因此使用多个同步线程进行的仿真完全模拟了膜内对象的行为。我们使用 C# 编程的模拟器实现并测试了这一建议,并对其在汇合和非汇合系统中的正确运行进行了测试。实验结果证实,该模拟器能很好地与多处理器的硬件线程数保持一致。实验结果表明,新模型是正确的,而且可以扩展到其他更复杂类型的 P 系统,从而发现这种多线程方法在多核处理器中运行时的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1