Vitoria Mattos Pereira, Amit Thakar , Sreejayan Nair
{"title":"Targeting iRhom2/ADAM17 attenuates COVID-19-induced cytokine release from cultured lung epithelial cells","authors":"Vitoria Mattos Pereira, Amit Thakar , Sreejayan Nair","doi":"10.1016/j.bbrep.2024.101811","DOIUrl":null,"url":null,"abstract":"<div><p>The COVID-19 pandemic, caused by SARS-CoV-2, continues to pose a significant global health challenge, with acute respiratory distress syndrome (ARDS) being a major cause of mortality. Excessive cytokine release (cytokine storm) has been causally related to COVID-19-associated ARDS. While TNF-α inhibitors have shown potential in reducing inflammation, their broad effects on TNF-α signaling, including both pro- and anti-inflammatory pathways, present significant challenges and side effects in clinical use. Therefore, more precise therapeutic targets are urgently needed. ADAM17 is a key enzyme driving cytokine release, but its broad presence complicates direct inhibition. Targeting iRhom2, a regulator specific to immune cells that controls ADAM17's activity, offers a more focused and effective approach to reducing cytokine release. In this study, we hypothesized that targeted inhibition of ADAM-17/iRhom2 attenuates COVID-19-induced cytokine release in cultured lung epithelial cells. Human primary bronchial/tracheal epithelial cells challenged with COVID-19 pseudo-viral particles resulted in elevated cytokine release, which was attenuated following siRNA-mediated silencing of ADAM17 and iRhom2. Targeting ADAM-17/iRhom2 pathway may thus represent a strategy to overcome the COVID-19-associated ARDS.</p></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"39 ","pages":"Article 101811"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405580824001754/pdfft?md5=37885f75458bf76bffac941e59e184f7&pid=1-s2.0-S2405580824001754-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824001754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, continues to pose a significant global health challenge, with acute respiratory distress syndrome (ARDS) being a major cause of mortality. Excessive cytokine release (cytokine storm) has been causally related to COVID-19-associated ARDS. While TNF-α inhibitors have shown potential in reducing inflammation, their broad effects on TNF-α signaling, including both pro- and anti-inflammatory pathways, present significant challenges and side effects in clinical use. Therefore, more precise therapeutic targets are urgently needed. ADAM17 is a key enzyme driving cytokine release, but its broad presence complicates direct inhibition. Targeting iRhom2, a regulator specific to immune cells that controls ADAM17's activity, offers a more focused and effective approach to reducing cytokine release. In this study, we hypothesized that targeted inhibition of ADAM-17/iRhom2 attenuates COVID-19-induced cytokine release in cultured lung epithelial cells. Human primary bronchial/tracheal epithelial cells challenged with COVID-19 pseudo-viral particles resulted in elevated cytokine release, which was attenuated following siRNA-mediated silencing of ADAM17 and iRhom2. Targeting ADAM-17/iRhom2 pathway may thus represent a strategy to overcome the COVID-19-associated ARDS.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.