{"title":"Petrofabric and Raman microspectroscopy study of the Mina Afortunada gneiss dome: Mapping its thermal gradient","authors":"P. Puelles , B. Ábalos","doi":"10.1016/j.jsg.2024.105236","DOIUrl":null,"url":null,"abstract":"<div><p>Black quartzites and migmatitic orthogneisses from the Mina Afortunada dome have been analysed through quartz and graphite petrofabric analysis and Raman microspectrometry on graphitized carbonaceous material. The results permit us to recognize a deformation temperature increase from the dome envelope towards its core marking the transition from basal-<a> to rhomb-<a> quartz intracrystalline slip systems at maximum T of 475 °C, and from rhomb-<a> to prism-<a> at maximum T of 515 °C. The complementary petrofabric and Raman study on graphite discloses a change from basal to prismatic <a> slip systems at maximum T of ca. 470 °C, accompanied by a strengthening of its structural order.</p><p>The Raman study of large graphite grains revealed a non-random crystallinity organization in them, with domains of weaker lattice structural order (reflecting lower formation T) in core areas and higher crystallinity sectors (higher formation T) at the rims. This finding might reflect a shielding effect during prograde metamorphism, the rim material preventing grain core material from reorganization and increase in its crystallinity. This study shows also that graphite can be a good candidate for pressure-temperature-time path reconstruction in metamorphosed organic-rich rocks.</p></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"187 ","pages":"Article 105236"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0191814124001883/pdfft?md5=9cb27be52954334fb4ec506b2ea6546d&pid=1-s2.0-S0191814124001883-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814124001883","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Black quartzites and migmatitic orthogneisses from the Mina Afortunada dome have been analysed through quartz and graphite petrofabric analysis and Raman microspectrometry on graphitized carbonaceous material. The results permit us to recognize a deformation temperature increase from the dome envelope towards its core marking the transition from basal-<a> to rhomb-<a> quartz intracrystalline slip systems at maximum T of 475 °C, and from rhomb-<a> to prism-<a> at maximum T of 515 °C. The complementary petrofabric and Raman study on graphite discloses a change from basal to prismatic <a> slip systems at maximum T of ca. 470 °C, accompanied by a strengthening of its structural order.
The Raman study of large graphite grains revealed a non-random crystallinity organization in them, with domains of weaker lattice structural order (reflecting lower formation T) in core areas and higher crystallinity sectors (higher formation T) at the rims. This finding might reflect a shielding effect during prograde metamorphism, the rim material preventing grain core material from reorganization and increase in its crystallinity. This study shows also that graphite can be a good candidate for pressure-temperature-time path reconstruction in metamorphosed organic-rich rocks.
期刊介绍:
The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.