Modeling of microwave thawing and reheating of multiphase foods: A case study for packed rice

IF 5.3 2区 农林科学 Q1 ENGINEERING, CHEMICAL Journal of Food Engineering Pub Date : 2024-08-20 DOI:10.1016/j.jfoodeng.2024.112284
Yasuaki Taguchi , Andres Abea , Yvan Llave , Chihiro Sugihara , Fumihiko Suzuki , Tomonori Hosoda , Kayoko Onizawa , Noboru Sakai , Mika Fukuoka
{"title":"Modeling of microwave thawing and reheating of multiphase foods: A case study for packed rice","authors":"Yasuaki Taguchi ,&nbsp;Andres Abea ,&nbsp;Yvan Llave ,&nbsp;Chihiro Sugihara ,&nbsp;Fumihiko Suzuki ,&nbsp;Tomonori Hosoda ,&nbsp;Kayoko Onizawa ,&nbsp;Noboru Sakai ,&nbsp;Mika Fukuoka","doi":"10.1016/j.jfoodeng.2024.112284","DOIUrl":null,"url":null,"abstract":"<div><p>Microwave (MW) thawing and reheating of porous foods such as rice is a common practice, but uniform heating can be difficult to achieve. Computer simulation models were developed using the finite-element method to study MW thawing and reheating of packed rice. A method to obtain an apparent thermal conductivity was proposed, which accounts for heat distribution by water evaporation and condensation through the air pores in the sample. Reheating experiments of mashed compact rice and regular porous rice were carried out on a flatbed MW oven for 90 s. Similarly, thawing experiments were conducted on porous rice for 180 s. Good agreement between simulated and experimental results was obtained when correcting for thermal conductivity of the pores and for the volumetric power absorption between the frozen and thawed fractions This can help in the design of specifically designed porous foods and containers that allow for fast and homogeneous reheating.</p></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"386 ","pages":"Article 112284"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424003509","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microwave (MW) thawing and reheating of porous foods such as rice is a common practice, but uniform heating can be difficult to achieve. Computer simulation models were developed using the finite-element method to study MW thawing and reheating of packed rice. A method to obtain an apparent thermal conductivity was proposed, which accounts for heat distribution by water evaporation and condensation through the air pores in the sample. Reheating experiments of mashed compact rice and regular porous rice were carried out on a flatbed MW oven for 90 s. Similarly, thawing experiments were conducted on porous rice for 180 s. Good agreement between simulated and experimental results was obtained when correcting for thermal conductivity of the pores and for the volumetric power absorption between the frozen and thawed fractions This can help in the design of specifically designed porous foods and containers that allow for fast and homogeneous reheating.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多相食品的微波解冻和再加热建模:包装米饭案例研究
微波(MW)解冻和加热大米等多孔食品是一种常见的做法,但很难实现均匀加热。利用有限元方法开发了计算机模拟模型,以研究包装大米的微波解冻和再加热。提出了一种获得表观热导率的方法,该方法考虑了通过样品中的气孔进行水分蒸发和冷凝所产生的热量分布。在校正孔隙的导热性以及冷冻和解冻部分之间的体积功率吸收时,模拟结果与实验结果之间取得了良好的一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Food Engineering
Journal of Food Engineering 工程技术-工程:化工
CiteScore
11.80
自引率
5.50%
发文量
275
审稿时长
24 days
期刊介绍: The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including: Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes. Accounts of food engineering achievements are of particular value.
期刊最新文献
Modeling, simulation, and optimization of multi-stage equilibrium extraction of phenolic compounds from grape pomace Microencapsulation of anthocyanin-rich extract of grumixama fruits (Eugenia brasiliensis) using non-conventional wall materials and in vitro gastrointestinal digestion Editorial Board Drop breakup can occur inside the gap of a high-pressure homogenizer – New evidence from experimental breakup visualizations Enzymatic bimetallic Cu-Ni micromotor sensor for xanthine detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1