{"title":"Quaternion Neural Networks: A physics-incorporated intelligence framework [Hypercomplex Signal and Image Processing]","authors":"Akira Hirose;Fang Shang;Yuta Otsuka;Ryo Natsuaki;Yuya Matsumoto;Naoto Usami;Yicheng Song;Haotian Chen","doi":"10.1109/MSP.2024.3384179","DOIUrl":null,"url":null,"abstract":"Why quaternions in neural networks (NNs)? Are there quaternions in the human brain? “No” may be an ordinary answer. However, quaternion NNs (QNNs) are a powerful framework that strongly connects artificial intelligence (AI) and the real world. In this article, we deal with NNs based on quaternions and describe their basics and features. We also detail the underlying ideas in their engineering applications, especially when we adaptively process the polarization information of electromagnetic waves. We focus on their role in remote sensing, such as Earth observation radar mounted on artificial satellites or aircraft and underground radar, as well as mobile communication. There, QNNs are a class of NNs that know physics, especially polarization, composing a framework by fusing measurement physics with adaptive-processing mathematics. This fusion realizes a seamless integration of measurement and intelligence, contributing to the construction of a human society having harmony between AI and real human lives.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 3","pages":"88-100"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10640325/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Why quaternions in neural networks (NNs)? Are there quaternions in the human brain? “No” may be an ordinary answer. However, quaternion NNs (QNNs) are a powerful framework that strongly connects artificial intelligence (AI) and the real world. In this article, we deal with NNs based on quaternions and describe their basics and features. We also detail the underlying ideas in their engineering applications, especially when we adaptively process the polarization information of electromagnetic waves. We focus on their role in remote sensing, such as Earth observation radar mounted on artificial satellites or aircraft and underground radar, as well as mobile communication. There, QNNs are a class of NNs that know physics, especially polarization, composing a framework by fusing measurement physics with adaptive-processing mathematics. This fusion realizes a seamless integration of measurement and intelligence, contributing to the construction of a human society having harmony between AI and real human lives.
期刊介绍:
EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.