{"title":"Predicting tumor mutation burden and VHL mutation from renal cancer pathology slides with self-supervised deep learning","authors":"Qingyuan Zheng, Xinyu Wang, Rui Yang, Junjie Fan, Jingping Yuan, Xiuheng Liu, Lei Wang, Zhuoni Xiao, Zhiyuan Chen","doi":"10.1002/cam4.70112","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Tumor mutation burden (TMB) and VHL mutation play a crucial role in the management of patients with clear cell renal cell carcinoma (ccRCC), such as guiding adjuvant chemotherapy and improving clinical outcomes. However, the time-consuming and expensive high-throughput sequencing methods severely limit their clinical applicability. Predicting intratumoral heterogeneity poses significant challenges in biology and clinical settings. Our aimed to develop a self-supervised attention-based multiple instance learning (SSL-ABMIL) model to predict TMB and VHL mutation status from hematoxylin and eosin-stained histopathological images.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We obtained whole slide images (WSIs) and somatic mutation data of 350 ccRCC patients from The Cancer Genome Atlas for developing SSL-ABMIL model. In parallel, 163 ccRCC patients from Clinical Proteomic Tumor Analysis Consortium cohort was used as independent external validation set. We systematically compared three different models (Wang-ABMIL, Ciga-ABMIL, and ImageNet-MIL) for their ability to predict TMB and VHL alterations.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We first identified two groups of populations with high- and low-TMB (cut-off point = 0.9). In two independent cohorts, the Wang-ABMIL model achieved the highest performance with decent generalization performance (AUROC = 0.83 ± 0.02 and 0.8 ± 0.04 in predicting TMB and VHL, respectively). Attention heatmaps revealed that the Wang-ABMIL model paid the highest attention to tumor regions in high-TMB patients, while in VHL mutation prediction, non-tumor regions were also assigned high attention, particularly the stromal regions infiltrated by lymphocytes.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our results indicated that SSL-ABMIL can effectively extract histological features for predicting TMB and VHL mutation, demonstrating promising results in linking tumor morphology and molecular biology.</p>\n </section>\n </div>","PeriodicalId":139,"journal":{"name":"Cancer Medicine","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cam4.70112","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cam4.70112","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Tumor mutation burden (TMB) and VHL mutation play a crucial role in the management of patients with clear cell renal cell carcinoma (ccRCC), such as guiding adjuvant chemotherapy and improving clinical outcomes. However, the time-consuming and expensive high-throughput sequencing methods severely limit their clinical applicability. Predicting intratumoral heterogeneity poses significant challenges in biology and clinical settings. Our aimed to develop a self-supervised attention-based multiple instance learning (SSL-ABMIL) model to predict TMB and VHL mutation status from hematoxylin and eosin-stained histopathological images.
Methods
We obtained whole slide images (WSIs) and somatic mutation data of 350 ccRCC patients from The Cancer Genome Atlas for developing SSL-ABMIL model. In parallel, 163 ccRCC patients from Clinical Proteomic Tumor Analysis Consortium cohort was used as independent external validation set. We systematically compared three different models (Wang-ABMIL, Ciga-ABMIL, and ImageNet-MIL) for their ability to predict TMB and VHL alterations.
Results
We first identified two groups of populations with high- and low-TMB (cut-off point = 0.9). In two independent cohorts, the Wang-ABMIL model achieved the highest performance with decent generalization performance (AUROC = 0.83 ± 0.02 and 0.8 ± 0.04 in predicting TMB and VHL, respectively). Attention heatmaps revealed that the Wang-ABMIL model paid the highest attention to tumor regions in high-TMB patients, while in VHL mutation prediction, non-tumor regions were also assigned high attention, particularly the stromal regions infiltrated by lymphocytes.
Conclusions
Our results indicated that SSL-ABMIL can effectively extract histological features for predicting TMB and VHL mutation, demonstrating promising results in linking tumor morphology and molecular biology.
期刊介绍:
Cancer Medicine is a peer-reviewed, open access, interdisciplinary journal providing rapid publication of research from global biomedical researchers across the cancer sciences. The journal will consider submissions from all oncologic specialties, including, but not limited to, the following areas:
Clinical Cancer Research
Translational research ∙ clinical trials ∙ chemotherapy ∙ radiation therapy ∙ surgical therapy ∙ clinical observations ∙ clinical guidelines ∙ genetic consultation ∙ ethical considerations
Cancer Biology:
Molecular biology ∙ cellular biology ∙ molecular genetics ∙ genomics ∙ immunology ∙ epigenetics ∙ metabolic studies ∙ proteomics ∙ cytopathology ∙ carcinogenesis ∙ drug discovery and delivery.
Cancer Prevention:
Behavioral science ∙ psychosocial studies ∙ screening ∙ nutrition ∙ epidemiology and prevention ∙ community outreach.
Bioinformatics:
Gene expressions profiles ∙ gene regulation networks ∙ genome bioinformatics ∙ pathwayanalysis ∙ prognostic biomarkers.
Cancer Medicine publishes original research articles, systematic reviews, meta-analyses, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented in the paper.