Random memristor-based dynamic graph CNN for efficient point cloud learning at the edge

Yifei Yu, Shaocong Wang, Meng Xu, Woyu Zhang, Bo Wang, Jichang Yang, Songqi Wang, Yue Zhang, Xiaoshan Wu, Hegan Chen, Dingchen Wang, Xi Chen, Ning Lin, Xiaojuan Qi, Dashan Shang, Zhongrui Wang
{"title":"Random memristor-based dynamic graph CNN for efficient point cloud learning at the edge","authors":"Yifei Yu, Shaocong Wang, Meng Xu, Woyu Zhang, Bo Wang, Jichang Yang, Songqi Wang, Yue Zhang, Xiaoshan Wu, Hegan Chen, Dingchen Wang, Xi Chen, Ning Lin, Xiaojuan Qi, Dashan Shang, Zhongrui Wang","doi":"10.1038/s44335-024-00006-0","DOIUrl":null,"url":null,"abstract":"The broad integration of 3D sensors into devices like smartphones and AR/VR headsets has led to a surge in 3D data, with point clouds becoming a mainstream representation method. Efficient real-time learning of point cloud data on edge devices is crucial for applications such as autonomous vehicles and embodied AI. Traditional machine learning models on digital processors face limitations, with software challenges like high training complexity, and hardware challenges such as large time and energy overheads due to von Neumann bottleneck. To address this, we propose a software-hardware co-designed random memristor-based dynamic graph CNN (RDGCNN). Software-wise, we transform point cloud into graph, and propose random EdgeConv for efficient hierarchical and topological features extraction. Hardware-wise, leveraging memristor’s intrinsic stochasticity and in-memory computing capability, we achieve significant reductions in training complexity and energy consumption. RDGCNN demonstrates high accuracy and efficiency across various point cloud tasks, paving the way for future edge 3D vision.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00006-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Unconventional Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44335-024-00006-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The broad integration of 3D sensors into devices like smartphones and AR/VR headsets has led to a surge in 3D data, with point clouds becoming a mainstream representation method. Efficient real-time learning of point cloud data on edge devices is crucial for applications such as autonomous vehicles and embodied AI. Traditional machine learning models on digital processors face limitations, with software challenges like high training complexity, and hardware challenges such as large time and energy overheads due to von Neumann bottleneck. To address this, we propose a software-hardware co-designed random memristor-based dynamic graph CNN (RDGCNN). Software-wise, we transform point cloud into graph, and propose random EdgeConv for efficient hierarchical and topological features extraction. Hardware-wise, leveraging memristor’s intrinsic stochasticity and in-memory computing capability, we achieve significant reductions in training complexity and energy consumption. RDGCNN demonstrates high accuracy and efficiency across various point cloud tasks, paving the way for future edge 3D vision.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机忆阻器的动态图 CNN,实现边缘点云的高效学习
三维传感器广泛集成到智能手机和 AR/VR 头显等设备中,导致三维数据激增,点云成为主流表示方法。在边缘设备上对点云数据进行高效的实时学习对于自动驾驶汽车和嵌入式人工智能等应用至关重要。数字处理器上的传统机器学习模型面临诸多限制,软件方面的挑战包括训练复杂度高,硬件方面的挑战包括冯-诺依曼瓶颈导致的大量时间和能源开销。为此,我们提出了一种软硬件协同设计的基于随机忆阻器的动态图 CNN(RDGCN)。在软件方面,我们将点云转换为图,并提出了随机 EdgeConv 以实现高效的层次和拓扑特征提取。在硬件方面,我们利用忆阻器固有的随机性和内存计算能力,显著降低了训练复杂度和能耗。RDGCNN 在各种点云任务中都表现出了高精度和高效率,为未来的边缘 3D 视觉铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing with oscillators from theoretical underpinnings to applications and demonstrators Adiabatic leaky integrate and fire neurons with refractory period for ultra low energy neuromorphic computing Thermodynamic linear algebra Efficient generation of grids and traversal graphs in compositional spaces towards exploration and path planning Demonstration of 4-quadrant analog in-memory matrix multiplication in a single modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1