The Missing Link(er): A Roadmap to Macrocyclization in Drug Discovery.

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL Journal of Medicinal Chemistry Pub Date : 2024-09-12 Epub Date: 2024-08-22 DOI:10.1021/acs.jmedchem.4c01163
Christian Brudy, Carlo Walz, Moritz Spiske, Johannes K Dreizler, Felix Hausch
{"title":"The Missing Link(er): A Roadmap to Macrocyclization in Drug Discovery.","authors":"Christian Brudy, Carlo Walz, Moritz Spiske, Johannes K Dreizler, Felix Hausch","doi":"10.1021/acs.jmedchem.4c01163","DOIUrl":null,"url":null,"abstract":"<p><p>Macrocycles are one of nature's preferred choices to generate large but cell-permeable bioactive molecules. Macrocyclization is increasingly prominent in medicinal chemistry beyond natural products, especially for difficult-to-drug targets. However, strategies to best exploit the potential of macrocycles are only beginning to emerge. Here we survey drug discovery campaigns from the past decade that cumulated in advanced macrocyclic drug-like compounds or drug candidates. Most macrocycles were conceived by ring closing based on U- or C-shaped bioactive conformations observed in co-crystal structures. We focus on the key step from linear precursors to the first macrocycle and the follow-up optimization of the resulting macrocyclic scaffold. Conformational control recurrently emerged as a key factor for macrocycle properties and linkers as an opportunity for optimization. With increasingly challenging drug targets, we expect these trends to become more prominent and relevant.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":" ","pages":"14768-14785"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01163","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Macrocycles are one of nature's preferred choices to generate large but cell-permeable bioactive molecules. Macrocyclization is increasingly prominent in medicinal chemistry beyond natural products, especially for difficult-to-drug targets. However, strategies to best exploit the potential of macrocycles are only beginning to emerge. Here we survey drug discovery campaigns from the past decade that cumulated in advanced macrocyclic drug-like compounds or drug candidates. Most macrocycles were conceived by ring closing based on U- or C-shaped bioactive conformations observed in co-crystal structures. We focus on the key step from linear precursors to the first macrocycle and the follow-up optimization of the resulting macrocyclic scaffold. Conformational control recurrently emerged as a key factor for macrocycle properties and linkers as an opportunity for optimization. With increasingly challenging drug targets, we expect these trends to become more prominent and relevant.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺失的环节:药物发现中的大环化路线图。
大环是自然界生成大型但具有细胞渗透性的生物活性分子的首选方法之一。大环化在天然产物之外的药物化学中日益突出,尤其是针对难治性靶点。然而,如何充分利用大环潜力的策略才刚刚开始出现。在此,我们将对过去十年中积累了先进的大环类药物或候选药物的药物发现活动进行调查。大多数大环化合物都是根据共晶体结构中观察到的 U 形或 C 形生物活性构象通过闭环构想出来的。我们重点关注从线性前体到第一个大环的关键步骤,以及由此产生的大环支架的后续优化。构象控制一再成为影响大环特性的关键因素,而连接体则是优化的契机。随着药物靶点越来越具有挑战性,我们预计这些趋势将变得更加突出和相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
期刊最新文献
Recent Developments in 14–3–3 Stabilizers for Regulating Protein–Protein Interactions: An Update Discovery and Optimization of a Series of Novel Morpholine-Containing USP1 Inhibitors Designing Effective Antimicrobial Agents: Structural Insights into the Antibiofilm Activity of Ionic Liquids Synthetic Approaches to the New Drugs Approved during 2023 The Myxobacterial Genus Archangium: A Prolific and Underexploited Source of Bioactive Secondary Metabolites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1