{"title":"Torque about electrostatically charged spheres makes them more attractive†","authors":"Michael R. Swift and Mike I. Smith","doi":"10.1039/D4SM00566J","DOIUrl":null,"url":null,"abstract":"<p >The strength of interparticle interactions in a granular system controls how a collection of insulating particles flow, cohere and fragment. Forces due to electrostatic charging, particularly in free-fall or low gravity environments, can dominate the static and dynamic interactions with important implications for understanding natural and industrial processes. Here we show that shaking of homogeneous, spherical particles can result in a non-uniform surface charge distribution. The measured dipole moment and torque for each particle are found to be strongly correlated. However, our model shows that to predict the torque and force requires one to consider the full surface charge distribution. This overlooked torque is not only significant, but would amplify attractive interactions through particle reorientation.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 35","pages":" 7038-7043"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00566j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The strength of interparticle interactions in a granular system controls how a collection of insulating particles flow, cohere and fragment. Forces due to electrostatic charging, particularly in free-fall or low gravity environments, can dominate the static and dynamic interactions with important implications for understanding natural and industrial processes. Here we show that shaking of homogeneous, spherical particles can result in a non-uniform surface charge distribution. The measured dipole moment and torque for each particle are found to be strongly correlated. However, our model shows that to predict the torque and force requires one to consider the full surface charge distribution. This overlooked torque is not only significant, but would amplify attractive interactions through particle reorientation.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.