{"title":"Single-cell transcriptomic atlas of taste papilla aging.","authors":"Wenwen Ren, Weihao Li, Xudong Cha, Shenglei Wang, Boyu Cai, Tianyu Wang, Fengzhen Li, Tengfei Li, Yingqi Xie, Zengyi Xu, Zhe Wang, Huanhai Liu, Yiqun Yu","doi":"10.1111/acel.14308","DOIUrl":null,"url":null,"abstract":"<p><p>Taste perception is one of the important senses in mammals. Taste dysfunction causes significant inconvenience in daily life, leading to subhealth and even life-threatening condition. Aging is a major cause to taste dysfunction, while the underlying feature related to gustatory aging is still not known. Using single-cell RNA Sequencing, differentially expressed genes between aged and young taste papillae are identified, including upregulated mt-Nd4l and Xist, as well as downregulated Hsp90ab1 and Tmem59. In the Tmem59<sup>-/-</sup> circumvallate papillae (CVP), taste mature cell generation is impaired by reduction in the numbers of PLCβ2<sup>+</sup> and Car4<sup>+</sup> cells, as well as decreases in expression levels of taste transduction genes. Tmem59<sup>-/-</sup> mice showed deficits in sensitivities to tastants. Through screening by GenAge and DisGeNET databases, aging-dependent genes and oral disease-associated genes are identified in taste papillae. In the CVP, aging promotes intercellular communication reciprocally between (cycling) basal cell and mature taste cell by upregulated Crlf1/Lifr and Adam15/Itga5 signaling. By transcriptional network analysis, ribosome proteins, Anxa1, Prdx5, and Hmgb1/2 are identified as transcriptional hubs in the aged taste papillae. Chronological aging-associated transcriptional changes throughout taste cell maturation are revealed. Aged taste papillae contain more Muc5b<sup>+</sup> cells that are not localized in gustatory gland. Collectively, this study shows molecular and cellular features associated with taste papilla aging.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14308","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Taste perception is one of the important senses in mammals. Taste dysfunction causes significant inconvenience in daily life, leading to subhealth and even life-threatening condition. Aging is a major cause to taste dysfunction, while the underlying feature related to gustatory aging is still not known. Using single-cell RNA Sequencing, differentially expressed genes between aged and young taste papillae are identified, including upregulated mt-Nd4l and Xist, as well as downregulated Hsp90ab1 and Tmem59. In the Tmem59-/- circumvallate papillae (CVP), taste mature cell generation is impaired by reduction in the numbers of PLCβ2+ and Car4+ cells, as well as decreases in expression levels of taste transduction genes. Tmem59-/- mice showed deficits in sensitivities to tastants. Through screening by GenAge and DisGeNET databases, aging-dependent genes and oral disease-associated genes are identified in taste papillae. In the CVP, aging promotes intercellular communication reciprocally between (cycling) basal cell and mature taste cell by upregulated Crlf1/Lifr and Adam15/Itga5 signaling. By transcriptional network analysis, ribosome proteins, Anxa1, Prdx5, and Hmgb1/2 are identified as transcriptional hubs in the aged taste papillae. Chronological aging-associated transcriptional changes throughout taste cell maturation are revealed. Aged taste papillae contain more Muc5b+ cells that are not localized in gustatory gland. Collectively, this study shows molecular and cellular features associated with taste papilla aging.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.