Dr. Shuai Zhao, Jia-Xuan Zhang, Chao-Fei Xu, Yingxin Ma, Jia-Hua Luo, Prof. Hongtao Lin, Yingli Shi, Prof. Xue-Dong Wang, Prof. Liang-Sheng Liao
{"title":"Programmable In-Situ Co-Assembly of Organic Multi-Block Nanowires for Cascade Optical Waveguides","authors":"Dr. Shuai Zhao, Jia-Xuan Zhang, Chao-Fei Xu, Yingxin Ma, Jia-Hua Luo, Prof. Hongtao Lin, Yingli Shi, Prof. Xue-Dong Wang, Prof. Liang-Sheng Liao","doi":"10.1002/anie.202412712","DOIUrl":null,"url":null,"abstract":"<p>Organic heterostructures (OHs) with multi-segments exhibit special optoelectronic properties compared with monomeric structures. Nevertheless, the synthesis of multi-block heterostructures remains challenging due to compatibility issues between segment parts, which restricts their application in optical waveguides and integrated optics. Herein, we demonstrate programmable in-situ co-assembly engineering, combining multi-step spontaneous self-assembly processes to promote the synthesis of multi-block heterostructures with a rational arrangement of three or more segments. The rational design of segments enables exciton manipulation and ensures optical waveguides and proper output among the multi-segment OHs. This work enables the controllable growth of segments within multi-block OHs, providing a pathway to construct complex OHs for the rational development of future optical applications.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 52","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202412712","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic heterostructures (OHs) with multi-segments exhibit special optoelectronic properties compared with monomeric structures. Nevertheless, the synthesis of multi-block heterostructures remains challenging due to compatibility issues between segment parts, which restricts their application in optical waveguides and integrated optics. Herein, we demonstrate programmable in-situ co-assembly engineering, combining multi-step spontaneous self-assembly processes to promote the synthesis of multi-block heterostructures with a rational arrangement of three or more segments. The rational design of segments enables exciton manipulation and ensures optical waveguides and proper output among the multi-segment OHs. This work enables the controllable growth of segments within multi-block OHs, providing a pathway to construct complex OHs for the rational development of future optical applications.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.