Catherine E Lovegrove, Sarah A Howles, Dominic Furniss, Michael V Holmes
{"title":"Causal inference in health and disease: a review of the principles and applications of Mendelian randomization.","authors":"Catherine E Lovegrove, Sarah A Howles, Dominic Furniss, Michael V Holmes","doi":"10.1093/jbmr/zjae136","DOIUrl":null,"url":null,"abstract":"<p><p>Mendelian randomization (MR) is a genetic epidemiological technique that uses genetic variation to infer causal relationships between modifiable exposures and outcome variables. Conventional observational epidemiological studies are subject to bias from a range of sources; MR analyses can offer an advantage in that they are less prone to bias as they use genetic variants inherited at conception as \"instrumental variables\", which are proxies of an exposure. However, as with all research tools, MR studies must be carefully designed to yield valuable insights into causal relationships between exposures and outcomes, and to avoid biased or misleading results that undermine the validity of the causal inferences drawn from the study. In this review, we outline Mendel's laws of inheritance, the assumptions and principles that underlie MR, MR study designs and methods, and how MR analyses can be applied and reported. Using the example of serum phosphate concentrations on liability to kidney stone disease we illustrate how MR estimates may be visualized and, finally, we contextualize MR in bone and mineral research including exemplifying how this technique could be employed to inform clinical studies and future guidelines concerning BMD and fracture risk. This review provides a framework to enhance understanding of how MR may be used to triangulate evidence and progress research in bone and mineral metabolism as we strive to infer causal effects in health and disease.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1539-1552"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae136","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Mendelian randomization (MR) is a genetic epidemiological technique that uses genetic variation to infer causal relationships between modifiable exposures and outcome variables. Conventional observational epidemiological studies are subject to bias from a range of sources; MR analyses can offer an advantage in that they are less prone to bias as they use genetic variants inherited at conception as "instrumental variables", which are proxies of an exposure. However, as with all research tools, MR studies must be carefully designed to yield valuable insights into causal relationships between exposures and outcomes, and to avoid biased or misleading results that undermine the validity of the causal inferences drawn from the study. In this review, we outline Mendel's laws of inheritance, the assumptions and principles that underlie MR, MR study designs and methods, and how MR analyses can be applied and reported. Using the example of serum phosphate concentrations on liability to kidney stone disease we illustrate how MR estimates may be visualized and, finally, we contextualize MR in bone and mineral research including exemplifying how this technique could be employed to inform clinical studies and future guidelines concerning BMD and fracture risk. This review provides a framework to enhance understanding of how MR may be used to triangulate evidence and progress research in bone and mineral metabolism as we strive to infer causal effects in health and disease.
期刊介绍:
The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.