Targeting spinal mechanistic target of rapamycin complex 2 alleviates inflammatory and neuropathic pain.

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY Brain Pub Date : 2025-02-03 DOI:10.1093/brain/awae275
Calvin Wong, Luis David Rodriguez-Hernandez, Kevin C Lister, Ning Gu, Weihua Cai, Mehdi Hooshmandi, Jonathan Fan, Nicole Brown, Vivienne Nguyen, Alfredo Ribeiro-da-Silva, Robert P Bonin, Arkady Khoutorsky
{"title":"Targeting spinal mechanistic target of rapamycin complex 2 alleviates inflammatory and neuropathic pain.","authors":"Calvin Wong, Luis David Rodriguez-Hernandez, Kevin C Lister, Ning Gu, Weihua Cai, Mehdi Hooshmandi, Jonathan Fan, Nicole Brown, Vivienne Nguyen, Alfredo Ribeiro-da-Silva, Robert P Bonin, Arkady Khoutorsky","doi":"10.1093/brain/awae275","DOIUrl":null,"url":null,"abstract":"<p><p>The development and maintenance of chronic pain involve the reorganization of spinal nocioceptive circuits. The mechanistic target of rapamycin complex 2 (mTORC2), a central signalling hub that modulates both actin-dependent structural changes and mechanistic target of rapamycin complex 1 (mTORC1)-dependent mRNA translation, plays key roles in hippocampal synaptic plasticity and memory formation. However, its function in spinal plasticity and chronic pain is poorly understood. Here, we show that pharmacological activation of spinal mTORC2 induces pain hypersensitivity, whereas its inhibition, using downregulation of the mTORC2-defining component Rictor, alleviates both inflammatory and neuropathic pain. Cell type-specific deletion of Rictor showed that the selective inhibition of mTORC2 in a subset of excitatory neurons impairs spinal synaptic potentiation and alleviates inflammation-induced mechanical and thermal hypersensitivity and nerve injury-induced heat hyperalgesia. The ablation of mTORC2 in inhibitory interneurons strongly alleviated nerve injury-induced mechanical hypersensitivity. Our findings reveal the role of mTORC2 in chronic pain and highlight its cell type-specific functions in mediating pain hypersensitivity in response to peripheral inflammation and nerve injury.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":" ","pages":"675-686"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae275","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development and maintenance of chronic pain involve the reorganization of spinal nocioceptive circuits. The mechanistic target of rapamycin complex 2 (mTORC2), a central signalling hub that modulates both actin-dependent structural changes and mechanistic target of rapamycin complex 1 (mTORC1)-dependent mRNA translation, plays key roles in hippocampal synaptic plasticity and memory formation. However, its function in spinal plasticity and chronic pain is poorly understood. Here, we show that pharmacological activation of spinal mTORC2 induces pain hypersensitivity, whereas its inhibition, using downregulation of the mTORC2-defining component Rictor, alleviates both inflammatory and neuropathic pain. Cell type-specific deletion of Rictor showed that the selective inhibition of mTORC2 in a subset of excitatory neurons impairs spinal synaptic potentiation and alleviates inflammation-induced mechanical and thermal hypersensitivity and nerve injury-induced heat hyperalgesia. The ablation of mTORC2 in inhibitory interneurons strongly alleviated nerve injury-induced mechanical hypersensitivity. Our findings reveal the role of mTORC2 in chronic pain and highlight its cell type-specific functions in mediating pain hypersensitivity in response to peripheral inflammation and nerve injury.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雷帕霉素复合物 2 的脊髓机制靶点可减轻炎症性和神经性疼痛。
慢性疼痛的发展和维持涉及脊髓痛觉回路的重组。雷帕霉素机制靶点复合体 2(mTORC2)是调节肌动蛋白依赖性结构变化和 mTORC1 依赖性 mRNA 翻译的中心信号枢纽,在海马突触可塑性和记忆形成中发挥着关键作用。然而,人们对它在脊髓可塑性和慢性疼痛中的功能却知之甚少。在这里,我们发现药理激活脊髓 mTORC2 会诱导痛觉过敏,而通过下调 mTORC2 定义成分 Rictor 来抑制它,则可减轻炎症性和神经性疼痛。细胞类型特异性删除 Rictor 表明,在兴奋性神经元亚群中选择性抑制 mTORC2 会损害脊髓突触电位,减轻炎症诱导的机械和热超敏反应,以及神经损伤诱导的热超敏痛。抑制性中间神经元中的mTORC2被消减后,神经损伤诱导的机械超敏反应会得到明显缓解。我们的研究结果揭示了mTORC2在慢性疼痛中的作用,并强调了它在外周炎症和神经损伤时介导痛觉过敏的细胞特异性功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
期刊最新文献
p75NTR modulation prevents cellular, cortical activity and cognitive dysfunctions caused by perinatal hypoxia Post-mortem validation of in vivo TSPO PET as a microglial biomarker TSC2 loss in neural progenitor cells suppresses mRNA translation of neurodevelopmental genes Mendelian randomization identifies proteins involved in neurodegenerative diseases Converging and conflicting evidence for left temporal lobe regions in acoustic-phonetic perception
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1