Xianfu Wei, Jinyan Feng, Long Chen, Chao Zhang, Yongheng Liu, Yan Zhang, Yao Xu, Jin Zhang, Jinwu Wang, Houzhi Yang, Xiuxin Han, Guowen Wang
{"title":"METTL3-mediated m6A modification of LINC00520 confers glycolysis and chemoresistance in osteosarcoma via suppressing ubiquitination of ENO1.","authors":"Xianfu Wei, Jinyan Feng, Long Chen, Chao Zhang, Yongheng Liu, Yan Zhang, Yao Xu, Jin Zhang, Jinwu Wang, Houzhi Yang, Xiuxin Han, Guowen Wang","doi":"10.1016/j.canlet.2024.217194","DOIUrl":null,"url":null,"abstract":"<p><p>Chemoresistance remains the main obstacle limiting the treatment of osteosarcoma, seriously affecting the prognosis of adolescent patients with osteosarcoma. Recently, long non-coding RNAs (lncRNAs) were reported to be involved in chemoresistance, while the mechanisms of lncRNAs underlying osteosarcoma resistance to chemotherapy remain elusive. Here, LINC00520 was identified as a novel cisplatin resistance-related lncRNA in osteosarcoma, and its high expression was associated with poor prognosis of osteosarcoma patients. Functionally, LINC00520 could potentiate osteosarcoma resistance to cisplatin in vitro and in vivo. Mechanistically, LINC00520 bound to ENO1 and upregulated ENO1 protein expression by blocking FBXW7-mediated ENO1 ubiquitination and proteasomal degradation, thereby promoting glycolysis and ultimately inducing cisplatin resistance in osteosarcoma. Furthermore, METTL3 could stabilize and upregulate LINC00520 in an m6A-YTHDF2-dependent manner in osteosarcoma. This study proposes a novel lncRNA-driven mechanism for cisplatin resistance in osteosarcoma, and offers a promising therapeutic strategy for reversing chemoresistance in osteosarcoma by targeting the METTL3/LINC00520/ENO1/glycolysis axis.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2024.217194","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemoresistance remains the main obstacle limiting the treatment of osteosarcoma, seriously affecting the prognosis of adolescent patients with osteosarcoma. Recently, long non-coding RNAs (lncRNAs) were reported to be involved in chemoresistance, while the mechanisms of lncRNAs underlying osteosarcoma resistance to chemotherapy remain elusive. Here, LINC00520 was identified as a novel cisplatin resistance-related lncRNA in osteosarcoma, and its high expression was associated with poor prognosis of osteosarcoma patients. Functionally, LINC00520 could potentiate osteosarcoma resistance to cisplatin in vitro and in vivo. Mechanistically, LINC00520 bound to ENO1 and upregulated ENO1 protein expression by blocking FBXW7-mediated ENO1 ubiquitination and proteasomal degradation, thereby promoting glycolysis and ultimately inducing cisplatin resistance in osteosarcoma. Furthermore, METTL3 could stabilize and upregulate LINC00520 in an m6A-YTHDF2-dependent manner in osteosarcoma. This study proposes a novel lncRNA-driven mechanism for cisplatin resistance in osteosarcoma, and offers a promising therapeutic strategy for reversing chemoresistance in osteosarcoma by targeting the METTL3/LINC00520/ENO1/glycolysis axis.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.