Yang Liu, Peipei Tang, Simin Peng, Jinmei Zhong, Zexin Xu, Jiawei Zhong, Jin Su, Yuhua Zhong, Kongzhen Hu
{"title":"[<sup>18</sup>F]AlF-CBP imaging of type I collagen for non-invasive monitoring of pulmonary fibrosis in preclinical models.","authors":"Yang Liu, Peipei Tang, Simin Peng, Jinmei Zhong, Zexin Xu, Jiawei Zhong, Jin Su, Yuhua Zhong, Kongzhen Hu","doi":"10.1007/s00259-024-06888-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Pulmonary fibrosis is an irreversible scar-forming condition for which there is a lack of non-invasive and specific methods for monitoring its progression and therapy efficacy. However, the disease is known to be accompanied by collagen accumulation. Here, we developed a novel positron emission tomography (PET) probe targeting type I collagen to evaluate its utility for the non-invasive assessment of pulmonary fibrosis.</p><p><strong>Methods: </strong>We designed a <sup>18</sup>F-labeled PET probe ([<sup>18</sup>F]AlF-CBP) to target type I collagen and evaluated its binding affinity, specificity and stability in vitro. PET with [<sup>18</sup>F]AlF-CBP, CT, histopathology, immunofluorescence, and biochemical indice were performed to assess and quantify type I collagen levels and pulmonary fibrosis progression and treatment in murine models. Dynamic PET/CT studies of [<sup>18</sup>F]AlF-CBP were conducted to assess lung fibrosis in non-human primate models.</p><p><strong>Results: </strong>[<sup>18</sup>F]AlF-CBP was successfully prepared, and in vitro and in vivo tests showed high stability (> 95%) and type I collagen specificity (IC<sub>50</sub> = 0.36 µM). The lungs of the fibrotic murine model showed more elevated probe uptake and retention compared to the control group, and there was a positive correlation between the radioactivity uptake signals and the degree of fibrosis (CT: R<sup>2</sup> = 0.89, P < 0.0001; hydroxyproline levels: R<sup>2</sup> = 0.89, P < 0.0001). PET signals also correlated well with mean lung density in non-human primate models of pulmonary fibrosis (R<sup>2</sup> = 0.84, P < 0.0001).</p><p><strong>Conclusion: </strong>[<sup>18</sup>F]AlF-CBP PET imaging is a promising non-invasive method for specific monitoring of lung fibrosis progression and therapy efficacy.</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":" ","pages":"22-35"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-024-06888-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Pulmonary fibrosis is an irreversible scar-forming condition for which there is a lack of non-invasive and specific methods for monitoring its progression and therapy efficacy. However, the disease is known to be accompanied by collagen accumulation. Here, we developed a novel positron emission tomography (PET) probe targeting type I collagen to evaluate its utility for the non-invasive assessment of pulmonary fibrosis.
Methods: We designed a 18F-labeled PET probe ([18F]AlF-CBP) to target type I collagen and evaluated its binding affinity, specificity and stability in vitro. PET with [18F]AlF-CBP, CT, histopathology, immunofluorescence, and biochemical indice were performed to assess and quantify type I collagen levels and pulmonary fibrosis progression and treatment in murine models. Dynamic PET/CT studies of [18F]AlF-CBP were conducted to assess lung fibrosis in non-human primate models.
Results: [18F]AlF-CBP was successfully prepared, and in vitro and in vivo tests showed high stability (> 95%) and type I collagen specificity (IC50 = 0.36 µM). The lungs of the fibrotic murine model showed more elevated probe uptake and retention compared to the control group, and there was a positive correlation between the radioactivity uptake signals and the degree of fibrosis (CT: R2 = 0.89, P < 0.0001; hydroxyproline levels: R2 = 0.89, P < 0.0001). PET signals also correlated well with mean lung density in non-human primate models of pulmonary fibrosis (R2 = 0.84, P < 0.0001).
Conclusion: [18F]AlF-CBP PET imaging is a promising non-invasive method for specific monitoring of lung fibrosis progression and therapy efficacy.
期刊介绍:
The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.