Effects of high-frequency mechanical stimuli on flow related vascular cell biology.

IF 1.4 4区 医学 Q4 ENGINEERING, BIOMEDICAL International Journal of Artificial Organs Pub Date : 2024-08-01 Epub Date: 2024-08-21 DOI:10.1177/03913988241268105
Elena Carrara, Luca Soliveri, Sofia Poloni, Michela Bozzetto, Chiara Emma Campiglio
{"title":"Effects of high-frequency mechanical stimuli on flow related vascular cell biology.","authors":"Elena Carrara, Luca Soliveri, Sofia Poloni, Michela Bozzetto, Chiara Emma Campiglio","doi":"10.1177/03913988241268105","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical forces related to blood pressure and flow patterns play a crucial role in vascular homeostasis. Perturbations in vascular stresses and strain resulting from changes in hemodynamic may occur in pathological conditions, leading to vascular dysfunction as well as in vascular prosthesis, arteriovenous shunt for hemodialysis and in mechanical circulation support. Turbulent-like blood flows can induce high-frequency vibrations of the vessel wall, and this stimulus has recently gained attention as potential contributors to vascular pathologies, such as development of intimal hyperplasia in arteriovenous fistula for hemodialysis. However, the biological response of vascular cells to this stimulus remains incompletely understood. This review provides an analysis of the existing literature concerning the impact of high-frequency stimuli on vascular cell morphology, function, and gene expression. Morphological and functional investigations reveal that vascular cells stimulated at frequencies higher than the normal heart rate exhibit alterations in cell shape, alignment, and proliferation, potentially leading to vessel remodeling. Furthermore, vibrations modulate endothelial and smooth muscle cells gene expression, affecting pathways related to inflammation, oxidative stress, and muscle hypertrophy. Understanding the effects of high-frequency vibrations on vascular cells is essential for unraveling the mechanisms underlying vascular diseases and identifying potential therapeutic targets. Nevertheless, there are still gaps in our understanding of the molecular pathways governing these cellular responses. Further research is necessary to elucidate these mechanisms and their therapeutic implications for vascular diseases.</p>","PeriodicalId":13932,"journal":{"name":"International Journal of Artificial Organs","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487902/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03913988241268105","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical forces related to blood pressure and flow patterns play a crucial role in vascular homeostasis. Perturbations in vascular stresses and strain resulting from changes in hemodynamic may occur in pathological conditions, leading to vascular dysfunction as well as in vascular prosthesis, arteriovenous shunt for hemodialysis and in mechanical circulation support. Turbulent-like blood flows can induce high-frequency vibrations of the vessel wall, and this stimulus has recently gained attention as potential contributors to vascular pathologies, such as development of intimal hyperplasia in arteriovenous fistula for hemodialysis. However, the biological response of vascular cells to this stimulus remains incompletely understood. This review provides an analysis of the existing literature concerning the impact of high-frequency stimuli on vascular cell morphology, function, and gene expression. Morphological and functional investigations reveal that vascular cells stimulated at frequencies higher than the normal heart rate exhibit alterations in cell shape, alignment, and proliferation, potentially leading to vessel remodeling. Furthermore, vibrations modulate endothelial and smooth muscle cells gene expression, affecting pathways related to inflammation, oxidative stress, and muscle hypertrophy. Understanding the effects of high-frequency vibrations on vascular cells is essential for unraveling the mechanisms underlying vascular diseases and identifying potential therapeutic targets. Nevertheless, there are still gaps in our understanding of the molecular pathways governing these cellular responses. Further research is necessary to elucidate these mechanisms and their therapeutic implications for vascular diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高频机械刺激对流动相关血管细胞生物学的影响。
与血压和血流模式有关的机械力在血管平衡中起着至关重要的作用。在病理情况下,血流动力学变化会导致血管应力和应变紊乱,从而导致血管功能障碍,在血管假体、用于血液透析的动静脉分流和机械循环支持中也是如此。湍流状血流可引起血管壁的高频振动,这种刺激作为血管病变的潜在诱因,如血液透析动静脉瘘内膜增生的发展,最近已引起人们的关注。然而,血管细胞对这种刺激的生物反应仍不完全清楚。本综述分析了有关高频刺激对血管细胞形态、功能和基因表达影响的现有文献。形态学和功能学研究显示,血管细胞在高于正常心率的频率刺激下,细胞形状、排列和增殖会发生改变,从而可能导致血管重塑。此外,振动还能调节内皮细胞和平滑肌细胞的基因表达,影响与炎症、氧化应激和肌肉肥大有关的途径。了解高频振动对血管细胞的影响对于揭示血管疾病的内在机制和确定潜在的治疗靶点至关重要。然而,我们对支配这些细胞反应的分子途径的了解仍有差距。有必要开展进一步研究,以阐明这些机制及其对血管疾病的治疗意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Artificial Organs
International Journal of Artificial Organs 医学-工程:生物医学
CiteScore
3.40
自引率
5.90%
发文量
92
审稿时长
3 months
期刊介绍: The International Journal of Artificial Organs (IJAO) publishes peer-reviewed research and clinical, experimental and theoretical, contributions to the field of artificial, bioartificial and tissue-engineered organs. The mission of the IJAO is to foster the development and optimization of artificial, bioartificial and tissue-engineered organs, for implantation or use in procedures, to treat functional deficits of all human tissues and organs.
期刊最新文献
Design of eye phantom for optical coherence tomography angiography study. Correlation between circulating dephosphorylated uncarboxylated matrix Gla protein and vascular calcification in peritoneal dialysis patients. Investigation of the acute effect of the synthetic hemodialysis membrane on the expression of XRCC1 and PARP1 in chronic hemodialysis patients. Dynamic modeling of variable speed left ventricular assist devices coupled to the cardiovascular system. Extracorporeal membrane oxygenation ameliorate hepatic injury in brain death rat donors with hemodynamic instability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1