Yufei Li, Xiaoyong Ma, Xiangyu Zhou, Penghzhen Cheng, Kai He, Tieliang Gong, Chen Li
{"title":"Integrating K+ Entities into Coreference Resolution on Biomedical Texts.","authors":"Yufei Li, Xiaoyong Ma, Xiangyu Zhou, Penghzhen Cheng, Kai He, Tieliang Gong, Chen Li","doi":"10.1109/TCBB.2024.3447273","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedical Coreference Resolution focuses on identifying the coreferences in biomedical texts, which normally consists of two parts: (i) mention detection to identify textual representation of biological entities and (ii) finding their coreference links. Recently, a popular approach to enhance the task is to embed knowledge base into deep neural networks. However, the way in which these methods integrate knowledge leads to the shortcoming that such knowledge may play a larger role in mention detection than coreference resolution. Specifically, they tend to integrate knowledge prior to mention detection, as part of the embeddings. Besides, they primarily focus on mention-dependent knowledge (KBase), i.e., knowledge entities directly related to mentions, while ignores the correlated knowledge (K+) between mentions in the mention-pair. For mentions with significant differences in word form, this may limit their ability to extract potential correlations between those mentions. Thus, this paper develops a novel model to integrate both KBase and K+ entities and achieves the state-of-the-art performance on BioNLP and CRAFT-CR datasets. Empirical studies on mention detection with different length reveals the effectiveness of the KBase entities. The evaluation on cross-sentence and match/mismatch coreference further demonstrate the superiority of the K+ entities in extracting background potential correlation between mentions.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3447273","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Biomedical Coreference Resolution focuses on identifying the coreferences in biomedical texts, which normally consists of two parts: (i) mention detection to identify textual representation of biological entities and (ii) finding their coreference links. Recently, a popular approach to enhance the task is to embed knowledge base into deep neural networks. However, the way in which these methods integrate knowledge leads to the shortcoming that such knowledge may play a larger role in mention detection than coreference resolution. Specifically, they tend to integrate knowledge prior to mention detection, as part of the embeddings. Besides, they primarily focus on mention-dependent knowledge (KBase), i.e., knowledge entities directly related to mentions, while ignores the correlated knowledge (K+) between mentions in the mention-pair. For mentions with significant differences in word form, this may limit their ability to extract potential correlations between those mentions. Thus, this paper develops a novel model to integrate both KBase and K+ entities and achieves the state-of-the-art performance on BioNLP and CRAFT-CR datasets. Empirical studies on mention detection with different length reveals the effectiveness of the KBase entities. The evaluation on cross-sentence and match/mismatch coreference further demonstrate the superiority of the K+ entities in extracting background potential correlation between mentions.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system