Ge Jin, Haribalan Kumar, Alys R Clark, Kelly S Burrowes, Eric A Hoffman, Merryn H Tawhai
{"title":"Evaluating the role of sex-related structure-function differences on airway aerosol transport and deposition.","authors":"Ge Jin, Haribalan Kumar, Alys R Clark, Kelly S Burrowes, Eric A Hoffman, Merryn H Tawhai","doi":"10.1152/japplphysiol.00898.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Several experimental studies have found that females have higher particle deposition in the airways than males. This has implications for the delivery of aerosolized therapeutics and for understanding sex differences in respiratory system response to environmental exposures. This study evaluates several factors that potentially contribute to sex differences in particle deposition, using scale-specific structure-function models of one-dimensional (1-D) ventilation distribution, particle transport, and deposition. The impact of gravity, inhalation flow rate, and dead space are evaluated in 12 structure-based models (7 females; 5 males). Females were found to have significantly higher total, bronchial, and alveolar deposition than males across a particle size range from 0.01 to 10 μm. Results suggest that higher deposition fraction in females is due to higher alveolar deposition for smaller particle sizes and higher bronchial deposition for larger particles. Females had higher alveolar deposition in the lower lobes and slightly lower particle concentration in the left upper lobe. Males were found to be more sensitive to changes due to gravity, showing greater reduction in bronchial deposition fraction. Males were also more sensitive to change in inhalation flow rate and to scaling of dead space due to the larger male baseline airway size. Predictions of sex differences in particle deposition-that are consistent with the literature-suggest that sex-based characteristics of lung and airway size interacting with particle size gives rise to differences in regional deposition.<b>NEW & NOTEWORTHY</b> Sex differences in airway tract particle deposition are analyzed using computational models that account for scale-specific structure and function. We show that sex-related differences in lung and airway size can explain experimental observations of increased deposition fraction in females, with females tending toward enhanced fine particle deposition in the alveolar airways and enhanced bronchial deposition for larger particles.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":"1285-1300"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00898.2023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Several experimental studies have found that females have higher particle deposition in the airways than males. This has implications for the delivery of aerosolized therapeutics and for understanding sex differences in respiratory system response to environmental exposures. This study evaluates several factors that potentially contribute to sex differences in particle deposition, using scale-specific structure-function models of one-dimensional (1-D) ventilation distribution, particle transport, and deposition. The impact of gravity, inhalation flow rate, and dead space are evaluated in 12 structure-based models (7 females; 5 males). Females were found to have significantly higher total, bronchial, and alveolar deposition than males across a particle size range from 0.01 to 10 μm. Results suggest that higher deposition fraction in females is due to higher alveolar deposition for smaller particle sizes and higher bronchial deposition for larger particles. Females had higher alveolar deposition in the lower lobes and slightly lower particle concentration in the left upper lobe. Males were found to be more sensitive to changes due to gravity, showing greater reduction in bronchial deposition fraction. Males were also more sensitive to change in inhalation flow rate and to scaling of dead space due to the larger male baseline airway size. Predictions of sex differences in particle deposition-that are consistent with the literature-suggest that sex-based characteristics of lung and airway size interacting with particle size gives rise to differences in regional deposition.NEW & NOTEWORTHY Sex differences in airway tract particle deposition are analyzed using computational models that account for scale-specific structure and function. We show that sex-related differences in lung and airway size can explain experimental observations of increased deposition fraction in females, with females tending toward enhanced fine particle deposition in the alveolar airways and enhanced bronchial deposition for larger particles.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.