Biochemical characterizations of the central fragment of human Reelin and identification of amino acid residues involved in its secretion.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of biochemistry Pub Date : 2024-11-04 DOI:10.1093/jb/mvae058
Takao Kohno, Ikuma Nakagawa, Airi Taniguchi, Fang Heng, Mitsuharu Hattori
{"title":"Biochemical characterizations of the central fragment of human Reelin and identification of amino acid residues involved in its secretion.","authors":"Takao Kohno, Ikuma Nakagawa, Airi Taniguchi, Fang Heng, Mitsuharu Hattori","doi":"10.1093/jb/mvae058","DOIUrl":null,"url":null,"abstract":"<p><p>Secreted protein Reelin is implicated in neuropsychiatric disorders and its supplementation ameliorates neurological symptoms in mouse disease models. Recombinant human Reelin protein may be useful for the treatment of human diseases, but its properties remain uncharacterized. Here, we report that full-length human Reelin was well secreted from transfected cells and was able to induce Dab1 phosphorylation. Unexpectedly, the central fragment of human Reelin was much less secreted than that of mouse Reelin. Three residues in the sixth Reelin repeat contributed to the secretion inefficiency, and their substitutions with mouse residues increased the secretion without affecting its biological activity. Our findings help efficient production of human Reelin protein for the supplementation therapy.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"385-393"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvae058","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Secreted protein Reelin is implicated in neuropsychiatric disorders and its supplementation ameliorates neurological symptoms in mouse disease models. Recombinant human Reelin protein may be useful for the treatment of human diseases, but its properties remain uncharacterized. Here, we report that full-length human Reelin was well secreted from transfected cells and was able to induce Dab1 phosphorylation. Unexpectedly, the central fragment of human Reelin was much less secreted than that of mouse Reelin. Three residues in the sixth Reelin repeat contributed to the secretion inefficiency, and their substitutions with mouse residues increased the secretion without affecting its biological activity. Our findings help efficient production of human Reelin protein for the supplementation therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类瑞林中心片段的生化特征以及参与其分泌的氨基酸残基的鉴定。
分泌蛋白 Reelin 与神经精神疾病有关,补充 Reelin 可改善小鼠疾病模型的神经症状。重组人 Reelin 蛋白可能有助于人类疾病的治疗,但其特性仍未定性。在这里,我们报告了全长人 Reelin 能从转染细胞中很好地分泌出来,并能诱导 Dab1 磷酸化。意想不到的是,人 Reelin 中心片段的分泌量远低于小鼠 Reelin。第六个 Reelin 重复片段中的三个残基导致了分泌效率低下,而用小鼠残基替代这三个残基后,人 Reelin 的分泌量增加了,但并不影响其生物活性。我们的发现有助于高效生产用于补充治疗的人Reelin蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
期刊最新文献
Maintenance of the Golgi Ribbon Structure by the KASH Protein Jaw1. Cellular senescence: mechanisms and relevance to cancer and aging. Bcl2l12, a novel protein interacting with Arf6, triggers Schwann cell differentiation program. Dietary methionine functions in proliferative zone maintenance and egg production via sams-1 in Caenorhabditis elegans. Variations associated with neurodevelopmental disorders affect ARF1 function and cortical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1