{"title":"Kairomonal Effect of Hexane Extracts of Corcyra cephalonica and Spodoptera frugiperda on the Parasitizing Activity of Trichogramma pretiosum.","authors":"Thokchom Tullika, Kennedy Ningthoujam","doi":"10.1007/s10886-024-01534-6","DOIUrl":null,"url":null,"abstract":"<p><p>Egg parasitoids, particularly Trichogrammatidae, play a crucial role in global biocontrol efforts. Their behavior is influenced by chemicals emitted by their hosts, such as kairomones. Among them, Trichogramma pretiosum (Riley) (Hym.; Trichogrammatidae) shows promise as a biocontrol agent on destructive Fall Armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lep.; Noctuidae). Given the invasiveness and widespread impact of FAW, early-stage prevention in the field is imperative. This study aimed to assess the potential of host insects viz.,Corcyra cephalonica (Stainton) (Lep.; Pyralidae) and S. frugiperda kairomones in optimizing the performance of T. pretiosum while parasitizing S. frugiperda. The top two hexane extracts from each host insect were also sent to JNU, AIRF in New Delhi for detailed GC-MS analysis. A four-armed olfactometer was developed to track the movements of T. pretiosum and validated with olfactory cues. Laboratory bioassays revealed that extracts from C. cephalonica and S. frugiperda eggs and moths effectively enhanced the performance of T. pretiosum. Optimal concentrations were determined through Petri dish bioassays, with C1 (10%) concentration of C. cephalonica eggs extract showing the highest Parasitoid Activity Index (PAI), percent parasitization, and adult emergence. Meanwhile, C2 (1%) concentration of S. frugiperda female extract exhibited the highest parasitization percentage and adult emergence. Further assessments in a polyhouse setting demonstrated that treated egg cards positioned 1 m from the release point achieved the highest mean percentage parasitization. Chemical composition analysis via GC-MS revealed that distinctive hydrocarbon and alcohol profiles in the extracts, suggesting their potential for manipulating parasitoid activity in biocontrol efforts. In the S. frugiperda female extract, 12 hydrocarbons and 3 alcohol groups were identified, with tetracontane as the predominant hydrocarbon compound followed by octane, heneicosane, and others. Meanwhile, the C. cephalonica egg extract displayed 9 hydrocarbons and 1 alcohol group, with dodecane leading in area percentage among the hydrocarbons followed by decane, nonane and others. The outputs of current study highlighted that T. pretiosum's utilization of kairomones from C. cephalonica and S. frugiperda, enhancing its search behavior for host eggs. The identification and synthesis of these kairomonal compounds have the potential to revolutionize pest management, emphasizing the role of kairomones in empowering natural predators and parasitoids for sustainable agriculture.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-024-01534-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Egg parasitoids, particularly Trichogrammatidae, play a crucial role in global biocontrol efforts. Their behavior is influenced by chemicals emitted by their hosts, such as kairomones. Among them, Trichogramma pretiosum (Riley) (Hym.; Trichogrammatidae) shows promise as a biocontrol agent on destructive Fall Armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lep.; Noctuidae). Given the invasiveness and widespread impact of FAW, early-stage prevention in the field is imperative. This study aimed to assess the potential of host insects viz.,Corcyra cephalonica (Stainton) (Lep.; Pyralidae) and S. frugiperda kairomones in optimizing the performance of T. pretiosum while parasitizing S. frugiperda. The top two hexane extracts from each host insect were also sent to JNU, AIRF in New Delhi for detailed GC-MS analysis. A four-armed olfactometer was developed to track the movements of T. pretiosum and validated with olfactory cues. Laboratory bioassays revealed that extracts from C. cephalonica and S. frugiperda eggs and moths effectively enhanced the performance of T. pretiosum. Optimal concentrations were determined through Petri dish bioassays, with C1 (10%) concentration of C. cephalonica eggs extract showing the highest Parasitoid Activity Index (PAI), percent parasitization, and adult emergence. Meanwhile, C2 (1%) concentration of S. frugiperda female extract exhibited the highest parasitization percentage and adult emergence. Further assessments in a polyhouse setting demonstrated that treated egg cards positioned 1 m from the release point achieved the highest mean percentage parasitization. Chemical composition analysis via GC-MS revealed that distinctive hydrocarbon and alcohol profiles in the extracts, suggesting their potential for manipulating parasitoid activity in biocontrol efforts. In the S. frugiperda female extract, 12 hydrocarbons and 3 alcohol groups were identified, with tetracontane as the predominant hydrocarbon compound followed by octane, heneicosane, and others. Meanwhile, the C. cephalonica egg extract displayed 9 hydrocarbons and 1 alcohol group, with dodecane leading in area percentage among the hydrocarbons followed by decane, nonane and others. The outputs of current study highlighted that T. pretiosum's utilization of kairomones from C. cephalonica and S. frugiperda, enhancing its search behavior for host eggs. The identification and synthesis of these kairomonal compounds have the potential to revolutionize pest management, emphasizing the role of kairomones in empowering natural predators and parasitoids for sustainable agriculture.
期刊介绍:
Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature.
Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.