{"title":"<i>Clostridioides difficile</i> exploits xanthine and uric acid as nutrients by utilizing a selenium-dependent catabolic pathway.","authors":"Michael A Johnstone, William T Self","doi":"10.1128/spectrum.00844-24","DOIUrl":null,"url":null,"abstract":"<p><p>Selenium is a trace element that plays critical roles in redox biology; it is typically incorporated into \"selenoproteins\" as the 21st amino acid selenocysteine. Additionally, selenium exists as a labile non-selenocysteine cofactor in a small subset of selenoproteins known as selenium-dependent molybdenum hydroxylases (SDMHs). In purinolytic clostridia, SDMHs are implicated in the degradation of hypoxanthine, xanthine, and uric acid for carbon and nitrogen. While SDMHs have been biochemically analyzed, the genes responsible for the insertion and maturation of the selenium cofactor lack characterization. In this study, we utilized the nosocomial pathogen <i>Clostridioides difficile</i> as a genetic model to begin characterizing this poorly understood selenium utilization pathway and its role in the catabolism of host-derived purines. We first observed that <i>C. difficile</i> could utilize hypoxanthine, xanthine, or uric acid to overcome a growth defect in a minimal medium devoid of glycine and threonine. However, strains lacking selenophosphate synthetase (<i>selD</i> mutants) still grew poorly in the presence of xanthine and uric acid, suggesting a selenium-dependent purinolytic process. Previous computational studies have identified <i>yqeB</i> and <i>yqeC</i> as potential candidates for cofactor maturation, so we subsequently deleted each gene using CRISPR-Cas9 technology. We surprisingly found that the growth of the Δ<i>yqeB</i> mutant in response to each purine was similar to the behavior of the <i>selD</i> mutants, while the Δ<i>yqeC</i> mutant exhibited no obvious phenotype. Our results suggest an important role for YqeB in selenium-dependent purine catabolism and also showcase <i>C. difficile</i> as an appropriate model organism to study the biological use of selenium.IMPORTANCEThe apparent modification of bacterial molybdenum hydroxylases with a catalytically essential selenium cofactor is the least understood mechanism of selenium incorporation. Selenium-dependent molybdenum hydroxylases play an important role in scavenging carbon and nitrogen from purines for purinolytic clostridia. Here, we used <i>Clostridioides difficile</i> as a genetic platform to begin dissecting the selenium cofactor trait and found genetic evidence for a selenium-dependent purinolytic pathway. The absence of <i>selD</i> or <i>yqeB</i>-a predicted genetic marker for the selenium cofactor trait-resulted in impaired growth on xanthine and uric acid, known substrates for selenium-dependent molybdenum hydroxylases. Our findings provide a genetic foundation for future research of this pathway and suggest a novel metabolic strategy for <i>C. difficile</i> to scavenge host-derived purines from the gut.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448449/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.00844-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Selenium is a trace element that plays critical roles in redox biology; it is typically incorporated into "selenoproteins" as the 21st amino acid selenocysteine. Additionally, selenium exists as a labile non-selenocysteine cofactor in a small subset of selenoproteins known as selenium-dependent molybdenum hydroxylases (SDMHs). In purinolytic clostridia, SDMHs are implicated in the degradation of hypoxanthine, xanthine, and uric acid for carbon and nitrogen. While SDMHs have been biochemically analyzed, the genes responsible for the insertion and maturation of the selenium cofactor lack characterization. In this study, we utilized the nosocomial pathogen Clostridioides difficile as a genetic model to begin characterizing this poorly understood selenium utilization pathway and its role in the catabolism of host-derived purines. We first observed that C. difficile could utilize hypoxanthine, xanthine, or uric acid to overcome a growth defect in a minimal medium devoid of glycine and threonine. However, strains lacking selenophosphate synthetase (selD mutants) still grew poorly in the presence of xanthine and uric acid, suggesting a selenium-dependent purinolytic process. Previous computational studies have identified yqeB and yqeC as potential candidates for cofactor maturation, so we subsequently deleted each gene using CRISPR-Cas9 technology. We surprisingly found that the growth of the ΔyqeB mutant in response to each purine was similar to the behavior of the selD mutants, while the ΔyqeC mutant exhibited no obvious phenotype. Our results suggest an important role for YqeB in selenium-dependent purine catabolism and also showcase C. difficile as an appropriate model organism to study the biological use of selenium.IMPORTANCEThe apparent modification of bacterial molybdenum hydroxylases with a catalytically essential selenium cofactor is the least understood mechanism of selenium incorporation. Selenium-dependent molybdenum hydroxylases play an important role in scavenging carbon and nitrogen from purines for purinolytic clostridia. Here, we used Clostridioides difficile as a genetic platform to begin dissecting the selenium cofactor trait and found genetic evidence for a selenium-dependent purinolytic pathway. The absence of selD or yqeB-a predicted genetic marker for the selenium cofactor trait-resulted in impaired growth on xanthine and uric acid, known substrates for selenium-dependent molybdenum hydroxylases. Our findings provide a genetic foundation for future research of this pathway and suggest a novel metabolic strategy for C. difficile to scavenge host-derived purines from the gut.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.