{"title":"Transcriptome analysis of Sesuvium portulacastrum L. uncovers key genes and pathways involved in root formation in response to low-temperature stress.","authors":"Jingyi Yang, Shiyu Lin, Yinghan Shen, Jingtao Ye, Xiamin Jiang, Sheng Li, Maowang Jiang","doi":"10.1007/s11103-024-01482-5","DOIUrl":null,"url":null,"abstract":"<p><p>Sesuvium portulacastrum L., a perennial facultative halophyte, is extensively distributed across tropical and subtropical coastal regions. Its limited cold tolerance significantly impacts both the productivity and the geographical distribution of this species in higher-latitude areas. In this study, we employed RNA-Seq technology to delineate the transcriptomic alterations in Sesuvium plants exposed to low temperatures, thus advancing our comprehension of the molecular underpinnings of this physiological adaptation and root formation. Our findings demonstrated differential expression of 10,805, 16,389, and 10,503 genes in the low versus moderate temperature (LT vs. MT), moderate versus high temperature (MT vs. HT), and low versus high temperature (LT vs. HT) comparative analyses, respectively. Notably, the gene categories \"structural molecule activity\", \"ribosome biogenesis\", and \"ribosome\" were particularly enriched among the LT vs. HT-specific differentially expressed genes (DEGs). When synthesizing the insights from these three comparative studies, the principal pathways associated with the cold response mechanism were identified as \"carbon fixation in photosynthetic organisms\", \"starch and sucrose metabolism\", \"plant hormone signal transduction\", \"glycolysis/gluconeogenesis\", and \"photosynthesis\". In addition, we elucidated the involvement of auxin signaling pathways, adventitious root formation (ARF), lateral root formation (LRF), and novel genes associated with shoot system development in root formation. Subsequently, we constructed a network diagram to investigate the interplay between hormone levels and pivotal genes, thereby clarifying the regulatory pathways of plant root formation under low-temperature stress and isolating key genes instrumental in root development. This study has provided critical insights into the molecular mechanisms that facilitate the adaptation to cold stress and root formation in S. portulacastrum.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 5","pages":"89"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-024-01482-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sesuvium portulacastrum L., a perennial facultative halophyte, is extensively distributed across tropical and subtropical coastal regions. Its limited cold tolerance significantly impacts both the productivity and the geographical distribution of this species in higher-latitude areas. In this study, we employed RNA-Seq technology to delineate the transcriptomic alterations in Sesuvium plants exposed to low temperatures, thus advancing our comprehension of the molecular underpinnings of this physiological adaptation and root formation. Our findings demonstrated differential expression of 10,805, 16,389, and 10,503 genes in the low versus moderate temperature (LT vs. MT), moderate versus high temperature (MT vs. HT), and low versus high temperature (LT vs. HT) comparative analyses, respectively. Notably, the gene categories "structural molecule activity", "ribosome biogenesis", and "ribosome" were particularly enriched among the LT vs. HT-specific differentially expressed genes (DEGs). When synthesizing the insights from these three comparative studies, the principal pathways associated with the cold response mechanism were identified as "carbon fixation in photosynthetic organisms", "starch and sucrose metabolism", "plant hormone signal transduction", "glycolysis/gluconeogenesis", and "photosynthesis". In addition, we elucidated the involvement of auxin signaling pathways, adventitious root formation (ARF), lateral root formation (LRF), and novel genes associated with shoot system development in root formation. Subsequently, we constructed a network diagram to investigate the interplay between hormone levels and pivotal genes, thereby clarifying the regulatory pathways of plant root formation under low-temperature stress and isolating key genes instrumental in root development. This study has provided critical insights into the molecular mechanisms that facilitate the adaptation to cold stress and root formation in S. portulacastrum.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.