Dion G Birhiray, Srikhar V Chilukuri, Caleb C Witsken, Maggie Wang, Jacob P Scioscia, Martin Gehrchen, Lorenzo R Deveza, Benny Dahl
{"title":"Machine learning identifies clusters of the normal adolescent spine based on sagittal balance.","authors":"Dion G Birhiray, Srikhar V Chilukuri, Caleb C Witsken, Maggie Wang, Jacob P Scioscia, Martin Gehrchen, Lorenzo R Deveza, Benny Dahl","doi":"10.1007/s43390-024-00952-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study applied a machine learning semi-supervised clustering approach to radiographs of adolescent sagittal spines from a single pediatric institution to identify patterns of sagittal alignment in the normal adolescent spine. We sought to explore the inherent variability found in adolescent sagittal alignment using machine learning to remove bias and determine whether clusters of sagittal alignment exist.</p><p><strong>Methods: </strong>Multiple semi-supervised machine learning clustering algorithms were applied to 111 normal adolescent sagittal spines. Sagittal parameters for resultant clusters were determined.</p><p><strong>Results: </strong>Machine learning analysis found that the spines did cluster into distinct groups with an optimal number of clusters ranging from 3 to 5. We performed an analysis on both 3 and 5-cluster groups. The 3-cluster groups analysis found good consistency between methods with 96 of 111, while the analysis of 5-cluster groups found consistency with 105 of 111 spines. When assessing for differences in sagittal parameters between the groups for both analyses, there were differences in T4-12 TK, L1-S1 LL, SS, SVA, PI-LL mismatch, and TPA. However, the only parameter that was statistically different for all groups was SVA.</p><p><strong>Conclusions: </strong>Based on machine learning, the adolescent sagittal spine alignments do cluster into distinct groups. While there were distinguishing features with TK and LL, the most important parameter distinguishing these groups was SVA. Further studies may help to understand these findings in relation to spinal deformities.</p>","PeriodicalId":21796,"journal":{"name":"Spine deformity","volume":" ","pages":"89-99"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spine deformity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43390-024-00952-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study applied a machine learning semi-supervised clustering approach to radiographs of adolescent sagittal spines from a single pediatric institution to identify patterns of sagittal alignment in the normal adolescent spine. We sought to explore the inherent variability found in adolescent sagittal alignment using machine learning to remove bias and determine whether clusters of sagittal alignment exist.
Methods: Multiple semi-supervised machine learning clustering algorithms were applied to 111 normal adolescent sagittal spines. Sagittal parameters for resultant clusters were determined.
Results: Machine learning analysis found that the spines did cluster into distinct groups with an optimal number of clusters ranging from 3 to 5. We performed an analysis on both 3 and 5-cluster groups. The 3-cluster groups analysis found good consistency between methods with 96 of 111, while the analysis of 5-cluster groups found consistency with 105 of 111 spines. When assessing for differences in sagittal parameters between the groups for both analyses, there were differences in T4-12 TK, L1-S1 LL, SS, SVA, PI-LL mismatch, and TPA. However, the only parameter that was statistically different for all groups was SVA.
Conclusions: Based on machine learning, the adolescent sagittal spine alignments do cluster into distinct groups. While there were distinguishing features with TK and LL, the most important parameter distinguishing these groups was SVA. Further studies may help to understand these findings in relation to spinal deformities.
期刊介绍:
Spine Deformity the official journal of the?Scoliosis Research Society is a peer-refereed publication to disseminate knowledge on basic science and clinical research into the?etiology?biomechanics?treatment?methods and outcomes of all types of?spinal deformities. The international members of the Editorial Board provide a worldwide perspective for the journal's area of interest.The?journal?will enhance the mission of the Society which is to foster the optimal care of all patients with?spine?deformities worldwide. Articles published in?Spine Deformity?are Medline indexed in PubMed.? The journal publishes original articles in the form of clinical and basic research. Spine Deformity will only publish studies that have institutional review board (IRB) or similar ethics committee approval for human and animal studies and have strictly observed these guidelines. The minimum follow-up period for follow-up clinical studies is 24 months.