Emmanuelle Satcho, Valerie C Snyder, Kunal K Dansingani, Alki Liasis, Nikita Kedia, Elena Gofas-Salas, Jay Chhablani, Joseph N Martel, José-Alain Sahel, Michel Paques, Ethan A Rossi, Marie-Helene Errera
{"title":"ADAPTIVE OPTICS AND MULTIMODAL IMAGING FOR INFLAMMATORY VITREORETINAL INTERFACE ABNORMALITIES.","authors":"Emmanuelle Satcho, Valerie C Snyder, Kunal K Dansingani, Alki Liasis, Nikita Kedia, Elena Gofas-Salas, Jay Chhablani, Joseph N Martel, José-Alain Sahel, Michel Paques, Ethan A Rossi, Marie-Helene Errera","doi":"10.1097/IAE.0000000000004144","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate changes to the vitreoretinal interface in uveitis with multimodal imaging including adaptive optics.</p><p><strong>Methods: </strong>Four eyes (four patients) affected by fovea-attached (subtype 1A) or fovea-sparing epiretinal membranes (ERMs) on spectral-domain optical coherence tomography or visible internal limiting membrane (ILM) on infrared scanning laser ophthalmoscope (SLO) fundus imaging were recruited in this pilot study. The microstructure of the vitreoretinal interface was imaged using flood-illumination adaptive optics (FIAO), and the images were compared with the cross-sectional spectral-domain optical coherence tomography data.</p><p><strong>Results: </strong>Adaptive optics images revealed multiple abnormalities of the vitreoretinal interface, such as deep linear striae in ERM, and hyperreflective microstructures at the location of ERMs and ILMs. The cone mosaic was imaged by FIAO and was found altered in the four eyes with ERMs or visible ILM. The same four eyes presented alteration of photopic 30 Hz flicker that was reduced in amplitude indicating cone inner retinal layer dysfunction.</p><p><strong>Conclusion: </strong>FIAO imaging can identify specific patterns associated with ERMs and ILMs. Correlating FIAO imaging of the vitreomacular interface with the structural alterations seen in FIAO at the level of the outer retinal structures can help understand the cause of significant macular dysfunction associated with ERM.</p>","PeriodicalId":54486,"journal":{"name":"Retina-The Journal of Retinal and Vitreous Diseases","volume":"44 9","pages":"1619-1632"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Retina-The Journal of Retinal and Vitreous Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/IAE.0000000000004144","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To investigate changes to the vitreoretinal interface in uveitis with multimodal imaging including adaptive optics.
Methods: Four eyes (four patients) affected by fovea-attached (subtype 1A) or fovea-sparing epiretinal membranes (ERMs) on spectral-domain optical coherence tomography or visible internal limiting membrane (ILM) on infrared scanning laser ophthalmoscope (SLO) fundus imaging were recruited in this pilot study. The microstructure of the vitreoretinal interface was imaged using flood-illumination adaptive optics (FIAO), and the images were compared with the cross-sectional spectral-domain optical coherence tomography data.
Results: Adaptive optics images revealed multiple abnormalities of the vitreoretinal interface, such as deep linear striae in ERM, and hyperreflective microstructures at the location of ERMs and ILMs. The cone mosaic was imaged by FIAO and was found altered in the four eyes with ERMs or visible ILM. The same four eyes presented alteration of photopic 30 Hz flicker that was reduced in amplitude indicating cone inner retinal layer dysfunction.
Conclusion: FIAO imaging can identify specific patterns associated with ERMs and ILMs. Correlating FIAO imaging of the vitreomacular interface with the structural alterations seen in FIAO at the level of the outer retinal structures can help understand the cause of significant macular dysfunction associated with ERM.
期刊介绍:
RETINA® focuses exclusively on the growing specialty of vitreoretinal disorders. The Journal provides current information on diagnostic and therapeutic techniques. Its highly specialized and informative, peer-reviewed articles are easily applicable to clinical practice.
In addition to regular reports from clinical and basic science investigators, RETINA® publishes special features including periodic review articles on pertinent topics, special articles dealing with surgical and other therapeutic techniques, and abstract cards. Issues are abundantly illustrated in vivid full color.
Published 12 times per year, RETINA® is truly a “must have” publication for anyone connected to this field.