Deep learning large-scale drug discovery and repurposing

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-08-21 DOI:10.1038/s43588-024-00679-4
Min Yu, Weiming Li, Yunru Yu, Yu Zhao, Lizhi Xiao, Volker M. Lauschke, Yiyu Cheng, Xingcai Zhang, Yi Wang
{"title":"Deep learning large-scale drug discovery and repurposing","authors":"Min Yu, Weiming Li, Yunru Yu, Yu Zhao, Lizhi Xiao, Volker M. Lauschke, Yiyu Cheng, Xingcai Zhang, Yi Wang","doi":"10.1038/s43588-024-00679-4","DOIUrl":null,"url":null,"abstract":"Large-scale drug discovery and repurposing is challenging. Identifying the mechanism of action (MOA) is crucial, yet current approaches are costly and low-throughput. Here we present an approach for MOA identification by profiling changes in mitochondrial phenotypes. By temporally imaging mitochondrial morphology and membrane potential, we established a pipeline for monitoring time-resolved mitochondrial images, resulting in a dataset comprising 570,096 single-cell images of cells exposed to 1,068 United States Food and Drug Administration-approved drugs. A deep learning model named MitoReID, using a re-identification (ReID) framework and an Inflated 3D ResNet backbone, was developed. It achieved 76.32% Rank-1 and 65.92% mean average precision on the testing set and successfully identified the MOAs for six untrained drugs on the basis of mitochondrial phenotype. Furthermore, MitoReID identified cyclooxygenase-2 inhibition as the MOA of the natural compound epicatechin in tea, which was successfully validated in vitro. Our approach thus provides an automated and cost-effective alternative for target identification that could accelerate large-scale drug discovery and repurposing. A deep learning-based model, MitoReID, is presented for profiling changes in mitochondrial phenotypes, allowing for the identification of various drugs’ mechanism of action.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 8","pages":"600-614"},"PeriodicalIF":12.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00679-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale drug discovery and repurposing is challenging. Identifying the mechanism of action (MOA) is crucial, yet current approaches are costly and low-throughput. Here we present an approach for MOA identification by profiling changes in mitochondrial phenotypes. By temporally imaging mitochondrial morphology and membrane potential, we established a pipeline for monitoring time-resolved mitochondrial images, resulting in a dataset comprising 570,096 single-cell images of cells exposed to 1,068 United States Food and Drug Administration-approved drugs. A deep learning model named MitoReID, using a re-identification (ReID) framework and an Inflated 3D ResNet backbone, was developed. It achieved 76.32% Rank-1 and 65.92% mean average precision on the testing set and successfully identified the MOAs for six untrained drugs on the basis of mitochondrial phenotype. Furthermore, MitoReID identified cyclooxygenase-2 inhibition as the MOA of the natural compound epicatechin in tea, which was successfully validated in vitro. Our approach thus provides an automated and cost-effective alternative for target identification that could accelerate large-scale drug discovery and repurposing. A deep learning-based model, MitoReID, is presented for profiling changes in mitochondrial phenotypes, allowing for the identification of various drugs’ mechanism of action.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习大规模药物发现和再利用。
大规模药物发现和再利用具有挑战性。确定药物的作用机制(MOA)至关重要,但目前的方法成本高、通量低。在这里,我们提出了一种通过线粒体表型变化进行MOA鉴定的方法。通过对线粒体形态和膜电位进行时间成像,我们建立了一个用于监测时间分辨线粒体图像的管道,形成了一个由 570,096 张单细胞图像组成的数据集,这些图像是暴露于 1,068 种美国食品药品管理局批准药物的细胞的图像。利用重新识别(ReID)框架和膨胀三维 ResNet 主干网,开发了名为 MitoReID 的深度学习模型。该模型在测试集上取得了 76.32% 的 Rank-1 和 65.92% 的平均精度,并根据线粒体表型成功识别了六种未经训练药物的 MOA。此外,MitoReID还确定了茶叶中天然化合物表儿茶素的MOA为环氧化酶-2抑制,并成功地进行了体外验证。因此,我们的方法为靶点识别提供了一种自动化、经济高效的替代方法,可以加速大规模药物发现和再利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Harnessing the power of DNA for computing Collective deliberation driven by AI Harnessing deep learning to build optimized ligands MassiveFold: unveiling AlphaFold’s hidden potential with optimized and parallelized massive sampling A deep learning approach for rational ligand generation with toxicity control via reactive building blocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1