A Neural Network–Based Scoring System for Predicting Prognosis and Therapy in Breast Cancer

Min Deng, Xinyu Chen, Jiayue Qiu, Guiyou Liu, Chen Huang
{"title":"A Neural Network–Based Scoring System for Predicting Prognosis and Therapy in Breast Cancer","authors":"Min Deng,&nbsp;Xinyu Chen,&nbsp;Jiayue Qiu,&nbsp;Guiyou Liu,&nbsp;Chen Huang","doi":"10.1002/cpz1.1122","DOIUrl":null,"url":null,"abstract":"<p>Breast cancer is a prevalent malignancy affecting women worldwide. Currently, there are no precise molecular biomarkers with immense potential for accurately predicting breast cancer development, which limits clinical management options. Recent evidence has highlighted the importance of metastatic and tumor-infiltrating immune cells in modulating the antitumor therapy response. However, the prognostic value of using these features in combination, and their potential for guiding individualized treatment for breast cancer, remains vague. To address this challenge, we recently developed the metastatic and immunogenomic risk score (MIRS), a comprehensive and user-friendly scoring system that leverages advanced bioinformatics methods to facilitate transcriptomics data analysis. To help users become familiar with the MIRS tool and apply it effectively in analyzing new breast cancer datasets, we describe detailed protocols that require no advanced programming skills. © 2024 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Calculating a MIRS score from transcriptomics data</p><p><b>Basic Protocol 2</b>: Predicting clinical outcomes from MIRS scores</p><p><b>Basic Protocol 3</b>: Evaluating treatment responses and guiding therapeutic strategies in breast cancer patients</p><p><b>Basic Protocol 4</b>: Guidelines for utilizing the MIRS webtool</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"4 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.1122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is a prevalent malignancy affecting women worldwide. Currently, there are no precise molecular biomarkers with immense potential for accurately predicting breast cancer development, which limits clinical management options. Recent evidence has highlighted the importance of metastatic and tumor-infiltrating immune cells in modulating the antitumor therapy response. However, the prognostic value of using these features in combination, and their potential for guiding individualized treatment for breast cancer, remains vague. To address this challenge, we recently developed the metastatic and immunogenomic risk score (MIRS), a comprehensive and user-friendly scoring system that leverages advanced bioinformatics methods to facilitate transcriptomics data analysis. To help users become familiar with the MIRS tool and apply it effectively in analyzing new breast cancer datasets, we describe detailed protocols that require no advanced programming skills. © 2024 Wiley Periodicals LLC.

Basic Protocol 1: Calculating a MIRS score from transcriptomics data

Basic Protocol 2: Predicting clinical outcomes from MIRS scores

Basic Protocol 3: Evaluating treatment responses and guiding therapeutic strategies in breast cancer patients

Basic Protocol 4: Guidelines for utilizing the MIRS webtool

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的乳腺癌预后和治疗预测评分系统
乳腺癌是影响全球妇女的一种常见恶性肿瘤。目前,还没有精确的分子生物标记物能够准确预测乳腺癌的发展,这限制了临床治疗方案的选择。最近有证据表明,转移性免疫细胞和肿瘤浸润性免疫细胞在调节抗肿瘤治疗反应方面具有重要作用。然而,结合使用这些特征的预后价值及其指导乳腺癌个体化治疗的潜力仍然模糊不清。为了应对这一挑战,我们最近开发了转移和免疫基因组风险评分(MIRS),这是一个全面且用户友好的评分系统,它利用先进的生物信息学方法促进转录组学数据分析。为了帮助用户熟悉 MIRS 工具并将其有效地应用于分析新的乳腺癌数据集,我们介绍了无需高级编程技能的详细操作步骤。© 2024 Wiley Periodicals LLC.基本协议 1:根据转录组学数据计算 MIRS 评分 基本协议 2:根据 MIRS 评分预测临床结果 基本协议 3:评估治疗反应并指导乳腺癌患者的治疗策略 基本协议 4:MIRS 网络工具使用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
Simple Isolation of Human Bone Marrow Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells. Targeted C-to-T Base Editing in the Arabidopsis Plastid Genome. Genetically Engineered and Implantable Mouse Brain Tumor Models: Characterization by Immunohistochemistry and Flow Cytometry. Miniscope Imaging of Nucleus Accumbens Neural Activity in Freely Behaving Rats: Virus Injection, Gradient Index Lens Implantation, Recording Strategies, and Analytical Methods. Modeling Malignant Mesothelioma in Genetically Engineered Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1