Xiaowei Zhang , Wenyan Liu , Qixin Zhang , Jin Tu , Leiyan Wu
{"title":"The impact of structural properties on the absorption of hen egg-white ovotransferrin with or without Fe3+ at the air/oil-water interface","authors":"Xiaowei Zhang , Wenyan Liu , Qixin Zhang , Jin Tu , Leiyan Wu","doi":"10.1016/j.jfoodeng.2024.112287","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the impact of structural changes (particle size, potential, hydrophobicity, circular dichroism spectra) in ovotransferrin with and without Fe<sup>3+</sup> (holo-OVT and apo-OVT) on their interfacial behaviors. Holo-OVT exhibited greater diffusion, penetration, and rearrangement rates at the oil-water interface, whereas apo-OVT was detected at the air-water interface owing to the reduced hydrophobicity of air phase. Reduced hydrophobicity of both the protein (apo-OVT) and the dispersed phase (oil) leads to shorter lag periods. As for the interfacial film, holo-OVT formed denser but thinner films than those formed by apo-OVT at both interfaces, as confirmed by larger viscoelastic modulus, reduced film thickness, and lower Gibbs surface excess. These findings were likely attributable to the greater structural rigidity of holo-OVT presented with significant decreases in hydrophobicity index (432.20) than apo-OVT (522.40). Ultimately, holo-OVT exhibited significant improvements in foaming and emulsifying stability than apo-OVT.</p></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"386 ","pages":"Article 112287"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424003534","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the impact of structural changes (particle size, potential, hydrophobicity, circular dichroism spectra) in ovotransferrin with and without Fe3+ (holo-OVT and apo-OVT) on their interfacial behaviors. Holo-OVT exhibited greater diffusion, penetration, and rearrangement rates at the oil-water interface, whereas apo-OVT was detected at the air-water interface owing to the reduced hydrophobicity of air phase. Reduced hydrophobicity of both the protein (apo-OVT) and the dispersed phase (oil) leads to shorter lag periods. As for the interfacial film, holo-OVT formed denser but thinner films than those formed by apo-OVT at both interfaces, as confirmed by larger viscoelastic modulus, reduced film thickness, and lower Gibbs surface excess. These findings were likely attributable to the greater structural rigidity of holo-OVT presented with significant decreases in hydrophobicity index (432.20) than apo-OVT (522.40). Ultimately, holo-OVT exhibited significant improvements in foaming and emulsifying stability than apo-OVT.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.