Bing Cao , Fortunato Alessandro , Guolong Li , Yongpeng Chen , Shizheng Sun
{"title":"Continuous optimization method of micro geometry for unparallel beveloid gears","authors":"Bing Cao , Fortunato Alessandro , Guolong Li , Yongpeng Chen , Shizheng Sun","doi":"10.1016/j.mechmachtheory.2024.105771","DOIUrl":null,"url":null,"abstract":"<div><p>To enhance the bearing capacity and minimize the loaded transmission error for unparallel beveloid gears, a continuous optimization method of micro geometry is proposed. Considering that the conjugate characteristic of tooth surfaces is destroyed by misalignments and modification, an unload contact analysis model is first developed. This includes a contact tooth sequence determination model and an unloaded transmission error calculation model for multi-tooth contact. To determine contact due to deformation, a potential contact point matching model of non-contact tooth surfaces is introduced. Further, a numerical loaded contact analysis model based on the influence coefficient method for unparallel beveloid gear is developed. For multi-tooth contact of modified tooth surfaces, the transmission error compatibility condition is introduced. Based on the loaded contact model, a continuous optimization model for the comprehensive performance of contact pressures and loaded transmission error within a meshing cycle is established. To improve optimization efficiency, a calculation strategy for continuous optimization is developed. The feasibility of the proposed method is validated using a numerical example.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"202 ","pages":"Article 105771"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001988","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the bearing capacity and minimize the loaded transmission error for unparallel beveloid gears, a continuous optimization method of micro geometry is proposed. Considering that the conjugate characteristic of tooth surfaces is destroyed by misalignments and modification, an unload contact analysis model is first developed. This includes a contact tooth sequence determination model and an unloaded transmission error calculation model for multi-tooth contact. To determine contact due to deformation, a potential contact point matching model of non-contact tooth surfaces is introduced. Further, a numerical loaded contact analysis model based on the influence coefficient method for unparallel beveloid gear is developed. For multi-tooth contact of modified tooth surfaces, the transmission error compatibility condition is introduced. Based on the loaded contact model, a continuous optimization model for the comprehensive performance of contact pressures and loaded transmission error within a meshing cycle is established. To improve optimization efficiency, a calculation strategy for continuous optimization is developed. The feasibility of the proposed method is validated using a numerical example.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry