{"title":"Investigation into NSAW excitation and modulation utilizing the grating mask technique","authors":"Xiaokang Ma, Bin Lin, Zaiwei Liu, Haiyaun Jia, Yangfan Wan, Yong Li, Wenxing Chen","doi":"10.1016/j.apacoust.2024.110230","DOIUrl":null,"url":null,"abstract":"<div><p>Narrowband surface acoustic wave (NSAW) method is a promising ultrasonic detection technique, with its laser-induced excitation technology offering the advantages of non-contact and flexible regulation. This paper proposes an NSAW excitation and modulation system based on the grating mask method to detect the nonlinear characteristics of the spectra caused by the variation in material surface properties. According to Doyer’s sharp line excitation theory, a strip line source array excitation model formed by superposition principle is established, and the effects of duty ratios of the masks on NSAW spectra amplitude characteristics are interpreted. An NSAW excitation and B-scan experimental system that can realize line source spacing changes is developed, and the effects of cylindrical lens height and masks with different duty ratios on NSAW spectra modulation are studied. The experimental results show that the amplitude ratios (the ratio of the double frequency amplitude to the second harmonic amplitude) are consistent with the results of the Doyer superimposed strip line source array excitation model in which the excitation light source energy is evenly distributed. The second-order nonlinear coefficients extracted from the experimental spectra can effectively characterize the surface properties of 6061 aluminum alloy at different annealing temperatures.</p></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24003815","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Narrowband surface acoustic wave (NSAW) method is a promising ultrasonic detection technique, with its laser-induced excitation technology offering the advantages of non-contact and flexible regulation. This paper proposes an NSAW excitation and modulation system based on the grating mask method to detect the nonlinear characteristics of the spectra caused by the variation in material surface properties. According to Doyer’s sharp line excitation theory, a strip line source array excitation model formed by superposition principle is established, and the effects of duty ratios of the masks on NSAW spectra amplitude characteristics are interpreted. An NSAW excitation and B-scan experimental system that can realize line source spacing changes is developed, and the effects of cylindrical lens height and masks with different duty ratios on NSAW spectra modulation are studied. The experimental results show that the amplitude ratios (the ratio of the double frequency amplitude to the second harmonic amplitude) are consistent with the results of the Doyer superimposed strip line source array excitation model in which the excitation light source energy is evenly distributed. The second-order nonlinear coefficients extracted from the experimental spectra can effectively characterize the surface properties of 6061 aluminum alloy at different annealing temperatures.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.