A Sparse Fixed-Point Online KPCA Extraction Algorithm

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal Processing Pub Date : 2024-08-20 DOI:10.1109/TSP.2024.3446512
João B. O. Souza Filho;Paulo S. R. Diniz
{"title":"A Sparse Fixed-Point Online KPCA Extraction Algorithm","authors":"João B. O. Souza Filho;Paulo S. R. Diniz","doi":"10.1109/TSP.2024.3446512","DOIUrl":null,"url":null,"abstract":"Kernel principal component analysis (KPCA) is a powerful tool for nonlinear feature extraction, but its standard formulation is not well-suited for streaming data. Although there are efficient online KPCA solutions, there is a gap in the literature regarding genuinely sparse online KPCA algorithms. This paper introduces a novel, fast, and accurate online fixed-point algorithm designed for sparse kernel principal component extraction. Utilizing a two-level sparsifying strategy, the proposed algorithm efficiently handles streaming data and large datasets within minimal computing and memory requirements, achieving both higher accuracy and sparser components compared to existing online KPCA methods.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"4604-4617"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643036/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Kernel principal component analysis (KPCA) is a powerful tool for nonlinear feature extraction, but its standard formulation is not well-suited for streaming data. Although there are efficient online KPCA solutions, there is a gap in the literature regarding genuinely sparse online KPCA algorithms. This paper introduces a novel, fast, and accurate online fixed-point algorithm designed for sparse kernel principal component extraction. Utilizing a two-level sparsifying strategy, the proposed algorithm efficiently handles streaming data and large datasets within minimal computing and memory requirements, achieving both higher accuracy and sparser components compared to existing online KPCA methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏定点在线 KPCA 提取算法
核主成分分析(KPCA)是一种用于非线性特征提取的强大工具,但其标准公式并不适合流数据。虽然有高效的在线 KPCA 解决方案,但关于真正稀疏的在线 KPCA 算法的文献还是空白。本文介绍了一种专为稀疏内核主成分提取设计的新颖、快速、精确的在线定点算法。与现有的在线 KPCA 方法相比,该算法利用两级稀疏化策略,以最小的计算和内存需求高效处理流数据和大型数据集,实现了更高的精度和更稀疏的成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
期刊最新文献
Simplicial Vector Autoregressive Models A Directional Generation Algorithm for SAR Image based on Azimuth-Guided Statistical Generative Adversarial Network Structured Directional Pruning via Perturbation Orthogonal Projection Intelligent Reflecting Surface-Assisted NLOS Sensing With OFDM Signals Robust Multichannel Decorrelation via Tensor Einstein Product
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1