Overcoming Resistance in Cancer Therapy: Computational Exploration of PIK3CA Mutations, Unveiling Novel Non-Toxic Inhibitors, and Molecular Insights Into Targeting PI3Kα.

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS Bioinformatics and Biology Insights Pub Date : 2024-08-19 eCollection Date: 2024-01-01 DOI:10.1177/11779322241269386
Ilham Kandoussi, Ghyzlane El Haddoumi, Mariam Mansouri, Lahcen Belyamani, Azeddine Ibrahimi, Rachid Eljaoudi
{"title":"Overcoming Resistance in Cancer Therapy: Computational Exploration of PIK3CA Mutations, Unveiling Novel Non-Toxic Inhibitors, and Molecular Insights Into Targeting PI3Kα.","authors":"Ilham Kandoussi, Ghyzlane El Haddoumi, Mariam Mansouri, Lahcen Belyamani, Azeddine Ibrahimi, Rachid Eljaoudi","doi":"10.1177/11779322241269386","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphoinositide-3-kinases (PI3 K) are pivotal regulators of cell signaling implicated in various cancers. Particularly, mutations in the PIK3CA gene encoding the p110α catalytic subunit drive oncogenic signaling, making it an attractive therapeutic target. Our study conducted in silico exploration of 31 PIK3CA mutations across breast, endometrial, colon, and ovarian cancers, assessing their impacts on response to PI3Kα inhibitors and identifying potential non-toxic inhibitors and also elucidating their effects on protein stability and flexibility. Specifically, we observed significant alterations in the stability and flexibility of the PI3 K protein induced by these mutations. Through molecular docking analysis, we evaluated the binding interactions between the selected inhibitors and the PI3 K protein. The filtration of ligands involved calculating chemical descriptors, incorporating Veber and Lipinski rules, as well as IC50 values and toxicity predictions. This process reduced the initial dataset of 1394 ligands to 12 potential non-toxic inhibitors, and four reference inhibitors with significant biological activity in clinical trials were then chosen based on their physico-chemical properties. This analysis revealed Lig5's exceptional performance, exhibiting superior affinity and specificity compared to established reference inhibitors such as pictilisib. Lig5 formed robust binding interactions with the PI3 K protein, suggesting its potential as a highly effective therapeutic agent against PI3 K-driven cancers. Furthermore, molecular dynamics simulations provided valuable insights into Lig5's stability and its interactions with PI3 K over 100 ns. These simulations supported Lig5's potential as a versatile inhibitor capable of effectively targeting various mutational profiles of PI3 K, thereby mitigating issues related to resistance and toxicity commonly associated with current inhibitors.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241269386"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339747/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322241269386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphoinositide-3-kinases (PI3 K) are pivotal regulators of cell signaling implicated in various cancers. Particularly, mutations in the PIK3CA gene encoding the p110α catalytic subunit drive oncogenic signaling, making it an attractive therapeutic target. Our study conducted in silico exploration of 31 PIK3CA mutations across breast, endometrial, colon, and ovarian cancers, assessing their impacts on response to PI3Kα inhibitors and identifying potential non-toxic inhibitors and also elucidating their effects on protein stability and flexibility. Specifically, we observed significant alterations in the stability and flexibility of the PI3 K protein induced by these mutations. Through molecular docking analysis, we evaluated the binding interactions between the selected inhibitors and the PI3 K protein. The filtration of ligands involved calculating chemical descriptors, incorporating Veber and Lipinski rules, as well as IC50 values and toxicity predictions. This process reduced the initial dataset of 1394 ligands to 12 potential non-toxic inhibitors, and four reference inhibitors with significant biological activity in clinical trials were then chosen based on their physico-chemical properties. This analysis revealed Lig5's exceptional performance, exhibiting superior affinity and specificity compared to established reference inhibitors such as pictilisib. Lig5 formed robust binding interactions with the PI3 K protein, suggesting its potential as a highly effective therapeutic agent against PI3 K-driven cancers. Furthermore, molecular dynamics simulations provided valuable insights into Lig5's stability and its interactions with PI3 K over 100 ns. These simulations supported Lig5's potential as a versatile inhibitor capable of effectively targeting various mutational profiles of PI3 K, thereby mitigating issues related to resistance and toxicity commonly associated with current inhibitors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
克服癌症治疗中的抗药性:PIK3CA 基因突变的计算探索、新型无毒抑制剂的揭示以及针对 PI3Kα 的分子洞察。
磷酸肌醇-3-激酶(PI3 K)是细胞信号传导的关键调节因子,与多种癌症有牵连。尤其是编码 p110α 催化亚基的 PIK3CA 基因突变会驱动致癌信号转导,使其成为一个有吸引力的治疗靶点。我们的研究对乳腺癌、子宫内膜癌、结肠癌和卵巢癌中的 31 种 PIK3CA 基因突变进行了硅学探索,评估了它们对 PI3Kα 抑制剂反应的影响,确定了潜在的无毒抑制剂,还阐明了它们对蛋白质稳定性和灵活性的影响。具体而言,我们观察到这些突变诱导的 PI3 K 蛋白的稳定性和灵活性发生了显著变化。通过分子对接分析,我们评估了所选抑制剂与 PI3 K 蛋白之间的结合相互作用。配体过滤包括计算化学描述符、结合 Veber 和 Lipinski 规则以及 IC50 值和毒性预测。这一过程将 1394 个配体的初始数据集减少到 12 个潜在的无毒抑制剂,然后根据其物理化学特性选择了四个在临床试验中具有显著生物活性的参考抑制剂。分析结果表明,Lig5 性能出众,与 Pictilisib 等成熟的参考抑制剂相比,具有更高的亲和力和特异性。Lig5 与 PI3 K 蛋白形成了强大的结合相互作用,这表明它有可能成为一种针对 PI3 K 驱动的癌症的高效治疗药物。此外,分子动力学模拟对 Lig5 的稳定性及其与 PI3 K 超过 100 ns 的相互作用提供了有价值的见解。这些模拟支持了 Lig5 作为一种多功能抑制剂的潜力,它能够有效地针对 PI3 K 的各种突变情况,从而缓解与目前抑制剂常见的耐药性和毒性相关的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinformatics and Biology Insights
Bioinformatics and Biology Insights BIOCHEMICAL RESEARCH METHODS-
CiteScore
6.80
自引率
1.70%
发文量
36
审稿时长
8 weeks
期刊介绍: Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.
期刊最新文献
Regulatory Element Analysis and Comparative Genomics Study of Heavy Metal-Resistant Genes in the Complete Genome of Cupriavidus gilardii CR3. Haplotypic Distribution of SARS-CoV-2 Variants in Cases of Intradomiciliary Infection in the State of Rondônia, Western Amazon. The TWW Growth Model and Its Application in the Analysis of Quantitative Polymerase Chain Reaction. Unlocking Benzosampangine's Potential: A Computational Approach to Investigating, Its Role as a PD-L1 Inhibitor in Tumor Immune Evasion via Molecular Docking, Dynamic Simulation, and ADMET Profiling. Drug Repositioning for Scorpion Envenomation Treatment Through Dual Inhibition of Chlorotoxin and Leiurotoxin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1