Liyun Xue PhD, Juncheng Zhu PhD, Yan Fang MD, Xiaoyan Xie PhD, Guangwen Cheng PhD, Yan Zhang MD, Jinhua Yu PhD, Jia Guo PhD, Hong Ding PhD
{"title":"Preoperative Ultrasound Radomics to Predict Posthepatectomy Liver Failure in Patients With Hepatocellular Carcinoma","authors":"Liyun Xue PhD, Juncheng Zhu PhD, Yan Fang MD, Xiaoyan Xie PhD, Guangwen Cheng PhD, Yan Zhang MD, Jinhua Yu PhD, Jia Guo PhD, Hong Ding PhD","doi":"10.1002/jum.16559","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>Posthepatectomy liver failure (PHLF) is a major cause of postoperative mortality in hepatocellular carcinoma (HCC) patients. The study aimed to develop a method based on the two-dimensional shear wave elastography and clinical data to evaluate the risk of PHLF in HCC patients with chronic hepatitis B.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>This multicenter study proposed a deep learning model (PHLF-Net) incorporating dual-modal ultrasound features and clinical indicators to predict the PHLF risk. The datasets were divided into a training cohort, an internal validation cohort, an internal independent testing cohort, and three external independent testing cohorts. Based on ResNet50 pretrained on ImageNet, PHLF-Net used a progressive training strategy with images of varying granularity and incorporated conventional B-mode and elastography images and clinical indicators related to liver reserve function.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In total, 532 HCC patients who underwent hepatectomy at five hospitals were enrolled. PHLF occurred in 147 patients (27.6%, 147/532). The PHLF-Net combining dual-modal ultrasound and clinical indicators demonstrated high effectiveness for predicting PHLF, with AUCs of 0.957 and 0.923 in the internal validation and testing sets, and AUCs of 0.950, 0.860, and 1.000 in the other three independent external testing sets. The performance of PHLF-Net outperformed models of single- and dual-modal US.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Preoperative ultrasound imaging combining clinical indicators can effectively predict the PHLF probability in patients with HCC. In the internal and external validation sets, PHLF-Net demonstrated its usefulness in predicting PHLF.</p>\n </section>\n </div>","PeriodicalId":17563,"journal":{"name":"Journal of Ultrasound in Medicine","volume":"43 12","pages":"2269-2280"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultrasound in Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jum.16559","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Posthepatectomy liver failure (PHLF) is a major cause of postoperative mortality in hepatocellular carcinoma (HCC) patients. The study aimed to develop a method based on the two-dimensional shear wave elastography and clinical data to evaluate the risk of PHLF in HCC patients with chronic hepatitis B.
Methods
This multicenter study proposed a deep learning model (PHLF-Net) incorporating dual-modal ultrasound features and clinical indicators to predict the PHLF risk. The datasets were divided into a training cohort, an internal validation cohort, an internal independent testing cohort, and three external independent testing cohorts. Based on ResNet50 pretrained on ImageNet, PHLF-Net used a progressive training strategy with images of varying granularity and incorporated conventional B-mode and elastography images and clinical indicators related to liver reserve function.
Results
In total, 532 HCC patients who underwent hepatectomy at five hospitals were enrolled. PHLF occurred in 147 patients (27.6%, 147/532). The PHLF-Net combining dual-modal ultrasound and clinical indicators demonstrated high effectiveness for predicting PHLF, with AUCs of 0.957 and 0.923 in the internal validation and testing sets, and AUCs of 0.950, 0.860, and 1.000 in the other three independent external testing sets. The performance of PHLF-Net outperformed models of single- and dual-modal US.
Conclusions
Preoperative ultrasound imaging combining clinical indicators can effectively predict the PHLF probability in patients with HCC. In the internal and external validation sets, PHLF-Net demonstrated its usefulness in predicting PHLF.
期刊介绍:
The Journal of Ultrasound in Medicine (JUM) is dedicated to the rapid, accurate publication of original articles dealing with all aspects of medical ultrasound, particularly its direct application to patient care but also relevant basic science, advances in instrumentation, and biological effects. The journal is an official publication of the American Institute of Ultrasound in Medicine and publishes articles in a variety of categories, including Original Research papers, Review Articles, Pictorial Essays, Technical Innovations, Case Series, Letters to the Editor, and more, from an international bevy of countries in a continual effort to showcase and promote advances in the ultrasound community.
Represented through these efforts are a wide variety of disciplines of ultrasound, including, but not limited to:
-Basic Science-
Breast Ultrasound-
Contrast-Enhanced Ultrasound-
Dermatology-
Echocardiography-
Elastography-
Emergency Medicine-
Fetal Echocardiography-
Gastrointestinal Ultrasound-
General and Abdominal Ultrasound-
Genitourinary Ultrasound-
Gynecologic Ultrasound-
Head and Neck Ultrasound-
High Frequency Clinical and Preclinical Imaging-
Interventional-Intraoperative Ultrasound-
Musculoskeletal Ultrasound-
Neurosonology-
Obstetric Ultrasound-
Ophthalmologic Ultrasound-
Pediatric Ultrasound-
Point-of-Care Ultrasound-
Public Policy-
Superficial Structures-
Therapeutic Ultrasound-
Ultrasound Education-
Ultrasound in Global Health-
Urologic Ultrasound-
Vascular Ultrasound