Synergy between Group 2 capsules and lipopolysaccharide underpins serum resistance in extra-intestinal pathogenic Escherichia coli.

IF 2.6 4区 生物学 Q3 MICROBIOLOGY Microbiology-Sgm Pub Date : 2024-08-01 DOI:10.1099/mic.0.001493
Naoise McGarry, Domhnall Roe, Stephen G J Smith
{"title":"Synergy between Group 2 capsules and lipopolysaccharide underpins serum resistance in extra-intestinal pathogenic <i>Escherichia coli</i>.","authors":"Naoise McGarry, Domhnall Roe, Stephen G J Smith","doi":"10.1099/mic.0.001493","DOIUrl":null,"url":null,"abstract":"<p><p><i>Escherichia coli (E. coli</i>) is a major cause of urinary tract infections, bacteraemia, and sepsis. CFT073 is a prototypic, urosepsis isolate of sequence type (ST) 73. This laboratory, among others, has shown that strain CFT073 is resistant to serum, with capsule and other extracellular polysaccharides imparting resistance. The interplay of such polysaccharides remains under-explored. This study has shown that CFT073 mutants deficient in lipopolysaccharide (LPS) O-antigen and capsule display exquisite serum sensitivity. Additionally, O-antigen and LPS outer core mutants displayed significantly decreased surface K2 capsule, coupled with increased unbound K2 capsule being detected in the supernatant. The R1 core and O6 antigen are involved in the tethering of K2 capsule to the CFT073 cell surface, highlighting the importance of the R1 core in serum resistance. The dependence of capsule on LPS was shown to be post-transcriptional and related to changes in cell surface hydrophobicity. Furthermore, immunofluorescence microscopy suggested that the surface pattern of capsule is altered in such LPS core mutants, which display a punctate capsule pattern. Finally, targeting LPS biosynthesis using sub-inhibitory concentrations of a WaaG inhibitor resulted in increased serum sensitivity and decreased capsule in CFT073. Interestingly, the dependency of capsule on LPS has been observed previously in other <i>Enterobacteria</i>, indicating that the synergy between these polysaccharides is not just strain, serotype or species-specific but may be conserved across several pathogenic Gram-negative species. Therefore, using WaaG inhibitor derivatives to target LPS is a promising therapeutic strategy to reduce morbidity and mortality by reducing or eliminating surface capsule.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001493","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Escherichia coli (E. coli) is a major cause of urinary tract infections, bacteraemia, and sepsis. CFT073 is a prototypic, urosepsis isolate of sequence type (ST) 73. This laboratory, among others, has shown that strain CFT073 is resistant to serum, with capsule and other extracellular polysaccharides imparting resistance. The interplay of such polysaccharides remains under-explored. This study has shown that CFT073 mutants deficient in lipopolysaccharide (LPS) O-antigen and capsule display exquisite serum sensitivity. Additionally, O-antigen and LPS outer core mutants displayed significantly decreased surface K2 capsule, coupled with increased unbound K2 capsule being detected in the supernatant. The R1 core and O6 antigen are involved in the tethering of K2 capsule to the CFT073 cell surface, highlighting the importance of the R1 core in serum resistance. The dependence of capsule on LPS was shown to be post-transcriptional and related to changes in cell surface hydrophobicity. Furthermore, immunofluorescence microscopy suggested that the surface pattern of capsule is altered in such LPS core mutants, which display a punctate capsule pattern. Finally, targeting LPS biosynthesis using sub-inhibitory concentrations of a WaaG inhibitor resulted in increased serum sensitivity and decreased capsule in CFT073. Interestingly, the dependency of capsule on LPS has been observed previously in other Enterobacteria, indicating that the synergy between these polysaccharides is not just strain, serotype or species-specific but may be conserved across several pathogenic Gram-negative species. Therefore, using WaaG inhibitor derivatives to target LPS is a promising therapeutic strategy to reduce morbidity and mortality by reducing or eliminating surface capsule.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第 2 组胶囊和脂多糖之间的协同作用是肠道外致病性大肠杆菌血清抗性的基础。
大肠杆菌(E. coli)是导致尿路感染、菌血症和败血症的主要原因。CFT073 是序列类型 (ST) 73 的尿毒症原型分离株。该实验室等研究表明,CFT073 菌株对血清具有抗性,其胶囊和其他胞外多糖也具有抗性。这些多糖之间的相互作用仍未得到充分研究。本研究表明,缺乏脂多糖(LPS)O-抗原和胶囊的 CFT073 突变体对血清非常敏感。此外,O 抗原和 LPS 外核突变体的表面 K2 胶囊显著减少,上清液中检测到的未结合 K2 胶囊增加。R1 核心和 O6 抗原参与了 K2 胶囊与 CFT073 细胞表面的系链,突出了 R1 核心在血清抗性中的重要性。研究表明,胶囊对 LPS 的依赖是转录后的,与细胞表面疏水性的变化有关。此外,免疫荧光显微镜表明,在这种 LPS 核心突变体中,胶囊的表面形态发生了改变,显示出点状胶囊形态。最后,使用亚抑制浓度的 WaaG 抑制剂靶向 LPS 生物合成会导致 CFT073 血清敏感性增加和胶囊减少。有趣的是,以前在其他肠杆菌中也观察到过胶囊对 LPS 的依赖性,这表明这些多糖之间的协同作用不仅具有菌株、血清型或物种特异性,而且可能在多个致病性革兰氏阴性菌中都是一致的。因此,使用 WaaG 抑制剂衍生物来靶向 LPS 是一种很有前景的治疗策略,可通过减少或消除表面胶囊来降低发病率和死亡率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
期刊最新文献
Microbial Primer: Phase variation - survival and adaptability by generation of a diverse population. Mutations in the efflux regulator gene oqxR provide a simple genetic switch for antimicrobial resistance in Klebsiella pneumoniae. Queuosine salvage in Bartonella henselae Houston 1: a unique evolutionary path. A comparative genomic and phenotypic study of Vibrio cholerae model strains using hybrid sequencing. Characterizing a stable five-species microbial community for use in experimental evolution and ecology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1