Research of online courses recommendation based on deep learning

Yuxuan Zhao , Chuantao Yin , Xi Wang , Yanmei Chai , Hui Chen , Yuanxin Ouyang
{"title":"Research of online courses recommendation based on deep learning","authors":"Yuxuan Zhao ,&nbsp;Chuantao Yin ,&nbsp;Xi Wang ,&nbsp;Yanmei Chai ,&nbsp;Hui Chen ,&nbsp;Yuanxin Ouyang","doi":"10.1016/j.procs.2024.08.255","DOIUrl":null,"url":null,"abstract":"<div><p>This paper delves into leveraging deep learning techniques, such as graph neural networks (GNNs), Transformer, and techniques in Large Language Models (LLMs), to enhance course recommendation systems in e-learning platforms. Recommendation methods have some short-comes in the case of online course with less information and choic less logic. Our research proposes novel algorithms that use graph collaborative filtering and sequential recommendation to improve recommendation accuracy and personalization. By analyzing user behavior patterns and course attributes, our approach aims to provide smarter and more efficient course recommendation services, ultimately enhancing learning outcomes and experiences in e-learning environments. This research not only contributes to the advancement of e-learning technology but also provides valuable insights for the broader application of deep learning in smart education.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"242 ","pages":"Pages 219-227"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877050924019744/pdf?md5=c94276aed63b8320b326636088ac3152&pid=1-s2.0-S1877050924019744-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924019744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper delves into leveraging deep learning techniques, such as graph neural networks (GNNs), Transformer, and techniques in Large Language Models (LLMs), to enhance course recommendation systems in e-learning platforms. Recommendation methods have some short-comes in the case of online course with less information and choic less logic. Our research proposes novel algorithms that use graph collaborative filtering and sequential recommendation to improve recommendation accuracy and personalization. By analyzing user behavior patterns and course attributes, our approach aims to provide smarter and more efficient course recommendation services, ultimately enhancing learning outcomes and experiences in e-learning environments. This research not only contributes to the advancement of e-learning technology but also provides valuable insights for the broader application of deep learning in smart education.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的在线课程推荐研究
本文深入探讨了如何利用图神经网络(GNN)、Transformer 和大型语言模型(LLM)技术等深度学习技术来增强电子学习平台中的课程推荐系统。对于信息和选择逻辑较少的在线课程,推荐方法存在一些不足。我们的研究提出了利用图协同过滤和顺序推荐来提高推荐准确性和个性化的新型算法。通过分析用户行为模式和课程属性,我们的方法旨在提供更智能、更高效的课程推荐服务,最终提高电子学习环境中的学习效果和体验。这项研究不仅有助于推动电子学习技术的发展,还为深度学习在智能教育中的广泛应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Circular Supply Chains and Industry 4.0: An Analysis of Interfaces in Brazilian Foodtechs Potentials of the Metaverse for Robotized Applications in Industry 4.0 and Industry 5.0 Preface Preface Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1