Optimal interpolation approach for groundwater depth estimation

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2024-08-15 DOI:10.1016/j.mex.2024.102916
{"title":"Optimal interpolation approach for groundwater depth estimation","authors":"","doi":"10.1016/j.mex.2024.102916","DOIUrl":null,"url":null,"abstract":"<div><p>In arid and semi-arid regions where surface water resources are scarce, groundwater is crucial. Accurate mapping of groundwater depth is vital for sustainable management practices. This study evaluated the performance of three spatial interpolation techniques – inverse distance weighting (IDW), ordinary kriging (OK), and radial basis functions (RBF) – in predicting groundwater depth distribution across Dire Dawa City, Ethiopia. The results demonstrated the superiority of the RBF method, exhibiting the lowest RMSE (3.21 m), MAE (0.16 m), and the highest R<sup>2</sup> (0.99) compared to IDW and OK. The IDW method emerged as the next best performer (RMSE = 4.68 m, MAE = 0.16 m, R<sup>2</sup>= 0.97), followed by OK (RMSE = 5.32 m, MAE = 0.42 m, R<sup>2</sup>= 0.95). The RBF's superior accuracy aligns with findings from other semi-arid regions, underscoring its suitability for data-scarce areas like Dire Dawa. This comparative evaluation provides valuable insights for selecting the optimal interpolation method for groundwater depth mapping, supporting informed decision-making in local water resource management.</p><p>The methodological approach comprised:</p><ul><li><span>•</span><span><p>Implementation of three interpolation techniques, namely, inverse distance weighting (IDW), ordinary kriging (OK), and radial basis functions (RBF), utilizing 56 groundwater depth measurements from locations dispersed throughout the study area.</p></span></li><li><span>•</span><span><p>Cross-validation through randomly withholding 20 % of the data for validation purposes.</p></span></li><li><span>•</span><span><p>Comparison of the techniques based on statistical measures of accuracy, including root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R<sup>2</sup>).</p></span></li></ul></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215016124003674/pdfft?md5=59bf641cfc567c651f1a94e4e4fb8134&pid=1-s2.0-S2215016124003674-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124003674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In arid and semi-arid regions where surface water resources are scarce, groundwater is crucial. Accurate mapping of groundwater depth is vital for sustainable management practices. This study evaluated the performance of three spatial interpolation techniques – inverse distance weighting (IDW), ordinary kriging (OK), and radial basis functions (RBF) – in predicting groundwater depth distribution across Dire Dawa City, Ethiopia. The results demonstrated the superiority of the RBF method, exhibiting the lowest RMSE (3.21 m), MAE (0.16 m), and the highest R2 (0.99) compared to IDW and OK. The IDW method emerged as the next best performer (RMSE = 4.68 m, MAE = 0.16 m, R2= 0.97), followed by OK (RMSE = 5.32 m, MAE = 0.42 m, R2= 0.95). The RBF's superior accuracy aligns with findings from other semi-arid regions, underscoring its suitability for data-scarce areas like Dire Dawa. This comparative evaluation provides valuable insights for selecting the optimal interpolation method for groundwater depth mapping, supporting informed decision-making in local water resource management.

The methodological approach comprised:

  • Implementation of three interpolation techniques, namely, inverse distance weighting (IDW), ordinary kriging (OK), and radial basis functions (RBF), utilizing 56 groundwater depth measurements from locations dispersed throughout the study area.

  • Cross-validation through randomly withholding 20 % of the data for validation purposes.

  • Comparison of the techniques based on statistical measures of accuracy, including root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地下水深度估算的最优插值法
在地表水资源匮乏的干旱和半干旱地区,地下水至关重要。准确绘制地下水深度图对于可持续管理至关重要。本研究评估了三种空间插值技术--反距离加权法(IDW)、普通克里金法(OK)和径向基函数法(RBF)--在预测埃塞俄比亚迪雷达瓦市地下水深度分布方面的性能。结果表明,与 IDW 和 OK 相比,RBF 方法的 RMSE(3.21 米)、MAE(0.16 米)最低,R2(0.99)最高,具有优势。其次是 IDW 方法(RMSE = 4.68 m,MAE = 0.16 m,R2= 0.97),然后是 OK 方法(RMSE = 5.32 m,MAE = 0.42 m,R2= 0.95)。RBF 的超高精度与其他半干旱地区的研究结果一致,突出表明它适用于像德雷达瓦这样的数据稀缺地区。这种比较评估为地下水深度绘图选择最佳插值方法提供了有价值的见解,为当地水资源管理的知情决策提供了支持。方法包括:-利用分散在整个研究区域的 56 个地点的地下水深度测量数据,实施三种插值技术,即反距离加权(IDW)、普通克里金(OK)和径向基函数(RBF)。-通过随机扣留 20% 的数据进行交叉验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊最新文献
ViT-HHO: Optimized vision transformer for diabetic retinopathy detection using Harris Hawk optimization Standardized lab-scale production of the recombinant fusion protein HUG for the nanoscale analysis of bilirubin The TOPSIS method: Figuring the landslide susceptibility using Excel and GIS A method to improve binary forecast skill verification Automated prediction of phosphorus concentration in soils using reflectance spectroscopy and machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1